rust_bert/models/openai_gpt/openai_gpt_model.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
// Copyright 2018-present, the HuggingFace Inc. team
// Copyright 2018-present, The OpenAI Team Authors
// Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
// Copyright 2019 Guillaume Becquin
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::common::dropout::Dropout;
use crate::common::embeddings::process_ids_embeddings_pair;
use crate::common::linear::{linear_no_bias, LinearNoBias};
use crate::gpt2::Gpt2Config;
use crate::openai_gpt::transformer::Block;
use crate::pipelines::common::{ModelType, TokenizerOption};
use crate::pipelines::generation_utils::private_generation_utils::PrivateLanguageGenerator;
use crate::pipelines::generation_utils::{Cache, GenerateConfig, LMModelOutput, LanguageGenerator};
use crate::{Config, RustBertError};
use std::borrow::{Borrow, BorrowMut};
use tch::kind::Kind::Int64;
use tch::nn::embedding;
use tch::{nn, Device, Tensor};
/// # GPT Pretrained model weight files
pub struct OpenAiGptModelResources;
/// # GPT Pretrained model config files
pub struct OpenAiGptConfigResources;
/// # GPT Pretrained model vocab files
pub struct OpenAiGptVocabResources;
/// # GPT Pretrained model merges files
pub struct OpenAiGptMergesResources;
impl OpenAiGptModelResources {
/// Shared under MIT license by the OpenAI team at <https://github.com/openai/finetune-transformer-lm>. Modified with conversion to C-array format.
pub const GPT: (&'static str, &'static str) = (
"openai-gpt/model",
"https://huggingface.co/openai-gpt/resolve/main/rust_model.ot",
);
}
impl OpenAiGptConfigResources {
/// Shared under MIT license by the OpenAI team at <https://github.com/openai/finetune-transformer-lm>. Modified with conversion to C-array format.
pub const GPT: (&'static str, &'static str) = (
"openai-gpt/config",
"https://huggingface.co/openai-gpt/resolve/main/config.json",
);
}
impl OpenAiGptVocabResources {
/// Shared under MIT license by the OpenAI team at <https://github.com/openai/finetune-transformer-lm>. Modified with conversion to C-array format.
pub const GPT: (&'static str, &'static str) = (
"openai-gpt/vocab",
"https://huggingface.co/openai-gpt/resolve/main/vocab.json",
);
}
impl OpenAiGptMergesResources {
/// Shared under MIT license by the OpenAI team at <https://github.com/openai/finetune-transformer-lm>. Modified with conversion to C-array format.
pub const GPT: (&'static str, &'static str) = (
"openai-gpt/merges",
"https://huggingface.co/openai-gpt/resolve/main/merges.txt",
);
}
/// # OpenAI GPT model configuration
/// Defines the OpenAI GPT model architecture (e.g. number of layers, hidden layer size, label mapping...)
pub type OpenAiGptConfig = Gpt2Config;
/// # GPT Base model
/// Base architecture for GPT model. Usually complemented with a task-specific head, such as a language model head. As opposed to GPT2, GPT does not give the possibility to re-use past activations as an input.
/// It is made of the following blocks:
/// - `tokens_embed`: `token` embeddings
/// - `positions_embed`: `position` embeddings
/// - `h`: Encoder (transformer) made of a vector of layers. Each layer is made of a multi-head attention layer, layer-normalization layers and a MLP made of linear layers.
/// - `output_hidden_states`: flag indicating if the model should return all hidden states (as opposed to only the last layer)
/// - `output_attentions`: flag indicating if the model should return activation weights
pub struct OpenAiGptModel {
tokens_embed: nn::Embedding,
positions_embed: nn::Embedding,
drop: Dropout,
h: Vec<Block>,
output_hidden_states: bool,
output_attentions: bool,
}
impl OpenAiGptModel {
/// Build a new `OpenAiGptModel`
///
/// # Arguments
///
/// * `p` - Variable store path for the root of the GPT model
/// * `config` - `OpenAiGptConfig` object defining the model architecture
///
/// # Example
///
/// ```no_run
/// use rust_bert::openai_gpt::{OpenAiGptConfig, OpenAiGptModel};
/// use rust_bert::Config;
/// use std::path::Path;
/// use tch::{nn, Device};
///
/// let config_path = Path::new("path/to/config.json");
/// let device = Device::Cpu;
/// let p = nn::VarStore::new(device);
/// let config = OpenAiGptConfig::from_file(config_path);
/// let gpt2: OpenAiGptModel = OpenAiGptModel::new(&p.root() / "gpt", &config);
/// ```
pub fn new<'p, P>(p: P, config: &Gpt2Config) -> OpenAiGptModel
where
P: Borrow<nn::Path<'p>>,
{
let p = p.borrow();
let tokens_embed = embedding(
p / "tokens_embed",
config.vocab_size,
config.n_embd,
Default::default(),
);
let positions_embed = embedding(
p / "positions_embed",
config.n_positions,
config.n_embd,
Default::default(),
);
let embd_pdrop = config.embd_pdrop.unwrap_or(0.1);
let drop = Dropout::new(embd_pdrop);
let mut h: Vec<Block> = vec![];
let h_path = p / "h";
for layer_index in 0..config.n_layer {
h.push(Block::new(&h_path / layer_index, config, true));
}
let output_attentions = config.output_attentions.unwrap_or(false);
let output_hidden_states = config.output_hidden_states.unwrap_or(false);
OpenAiGptModel {
tokens_embed,
positions_embed,
drop,
h,
output_hidden_states,
output_attentions,
}
}
/// Forward pass through the model
///
/// # Arguments
///
/// * `input_ids` - Optional input tensor of shape (*batch size*, *sequence_length*). If None, pre-computed embeddings must be provided (see `input_embeds`)
/// * `attention_mask` - Optional mask of shape (*batch size*, *sequence_length*). Masked position have value 0, non-masked value 1. If None set to 1
/// * `input_embeds` - Optional pre-computed input embeddings of shape (*batch size*, *sequence_length*, *hidden_size*). If None, input ids must be provided (see `input_ids`)
/// * `token_type_ids` - Optional token type ids used to indicate the portion of the input the token belongs to. If not None, token type embeddings will be added to the token and position embeddings.
/// * `position_ids` - Optional position ids of shape (*batch size*, *sequence_length*). If None, will be incremented starting from the length of the past input.
/// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
///
/// # Returns
///
/// * `OpenAiGptModelOutput` containing:
/// - `output` - `Tensor` of shape (*batch size*, *sequence_length*, *hidden_size*) representing the activations of the last hidden state
/// - `all_hidden_states` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
/// - `all_attentions` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
///
/// # Example
///
/// ```no_run
/// # use tch::{nn, Device, Tensor, no_grad};
/// # use rust_bert::Config;
/// # use std::path::Path;
/// # use tch::kind::Kind::{Int64, Double};
/// use rust_bert::gpt2::Gpt2Config;
/// use rust_bert::openai_gpt::OpenAiGptModel;
/// # let config_path = Path::new("path/to/config.json");
/// # let vocab_path = Path::new("path/to/vocab.txt");
/// # let device = Device::Cpu;
/// # let vs = nn::VarStore::new(device);
/// # let config = Gpt2Config::from_file(config_path);
/// # let gpt_model: OpenAiGptModel = OpenAiGptModel::new(&vs.root(), &config);
/// let (batch_size, sequence_length, past_sequence_length) = (64, 128, 56);
/// let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
/// let attention_mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
/// let token_type_ids = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
/// let position_ids = Tensor::arange(sequence_length, (Int64, device))
/// .expand(&[batch_size, sequence_length], true);
///
/// let model_output = no_grad(|| {
/// gpt_model
/// .forward_t(
/// Some(&input_tensor),
/// Some(&attention_mask),
/// Some(&token_type_ids),
/// Some(&position_ids),
/// None,
/// false,
/// )
/// .unwrap()
/// });
/// ```
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
train: bool,
) -> Result<OpenAiGptModelOutput, RustBertError> {
let (calc_input_embeddings, input_shape, _) =
process_ids_embeddings_pair(input_ids, input_embeds, &self.tokens_embed)?;
let input_embeddings =
input_embeds.unwrap_or_else(|| calc_input_embeddings.as_ref().unwrap());
let seq_length = input_shape[1];
let position_ids = match position_ids {
Some(value) => value.copy(),
None => Tensor::arange(seq_length, (Int64, input_embeddings.device())).unsqueeze(0),
};
let attention_mask = attention_mask.as_ref().map(|value| {
((value
.view((input_embeddings.size()[0], -1))
.unsqueeze(1)
.unsqueeze(2)
- 1.0)
* 10000.0)
.to_kind(input_embeddings.kind())
});
let position_embeds = position_ids.apply(&self.positions_embed);
let token_type_embeds = match token_type_ids {
Some(value) => value.apply(&self.tokens_embed),
None => Tensor::zeros_like(&position_embeds),
};
let mut hidden_state: Tensor =
(input_embeddings + position_embeds + token_type_embeds).apply_t(&self.drop, train);
let mut all_hidden_states: Option<Vec<Tensor>> = if self.output_hidden_states {
Some(vec![])
} else {
None
};
let mut all_attentions: Option<Vec<Tensor>> = if self.output_attentions {
Some(vec![])
} else {
None
};
for layer in &self.h {
let temp = layer.forward_t(&hidden_state, attention_mask.as_ref(), train);
hidden_state = temp.0;
if let Some(attentions) = all_attentions.borrow_mut() {
attentions.push(temp.1.unwrap());
};
if let Some(hidden_states) = all_hidden_states.borrow_mut() {
hidden_states.push(hidden_state.as_ref().copy());
};
}
Ok(OpenAiGptModelOutput {
hidden_state,
all_hidden_states,
all_attentions,
})
}
}
/// # GPT Language Modeling head
/// GPT model with a decoding head (linear layer without bias). The weights of the linear layer are tied to the word embeddings
/// It is made of the following blocks:
/// - `transformer`: Base Gpt2Model
/// - `lm_head`: Linear layer without bias tied to the weights of the token id embeddings
pub struct OpenAIGPTLMHeadModel {
transformer: OpenAiGptModel,
lm_head: LinearNoBias,
}
impl OpenAIGPTLMHeadModel {
/// Build a new `OpenAIGPTLMHeadModel`
///
/// # Arguments
///
/// * `p` - Variable store path for the root of the GPT model
/// * `config` - `Gpt2Config` object defining the model architecture
///
/// # Example
///
/// ```no_run
/// use rust_bert::gpt2::Gpt2Config;
/// use rust_bert::openai_gpt::OpenAIGPTLMHeadModel;
/// use rust_bert::Config;
/// use std::path::Path;
/// use tch::{nn, Device};
///
/// let config_path = Path::new("path/to/config.json");
/// let device = Device::Cpu;
/// let p = nn::VarStore::new(device);
/// let config = Gpt2Config::from_file(config_path);
/// let gpt2: OpenAIGPTLMHeadModel = OpenAIGPTLMHeadModel::new(&p.root() / "gpt", &config);
/// ```
pub fn new<'p, P>(p: P, config: &Gpt2Config) -> OpenAIGPTLMHeadModel
where
P: Borrow<nn::Path<'p>>,
{
let p = p.borrow();
let transformer = OpenAiGptModel::new(p, config);
let lm_head = linear_no_bias(
p / "lm_head",
config.n_embd,
config.vocab_size,
Default::default(),
);
OpenAIGPTLMHeadModel {
transformer,
lm_head,
}
}
/// Forward pass through the model
///
/// # Arguments
///
/// * `input_ids` - Optional input tensor of shape (*batch size*, *sequence_length*). If None, pre-computed embeddings must be provided (see `input_embeds`)
/// * `_layer_past` - Unused for GPT
/// * `attention_mask` - Optional mask of shape (*batch size*, *sequence_length*). Masked position have value 0, non-masked value 1. If None set to 1
/// * `input_embeds` - Optional pre-computed input embeddings of shape (*batch size*, *sequence_length*, *hidden_size*). If None, input ids must be provided (see `input_ids`)
/// * `token_type_ids` - Optional token type ids used to indicate the portion of the input the token belongs to. If not None, token type embeddings will be added to the token and position embeddings.
/// * `position_ids` - Optional position ids of shape (*batch size*, *sequence_length*). If None, will be incremented starting from the length of the past input.
/// * `_encoder_outputs` - Unused for GPT
/// * `_decoder_input_ids` - Unused for GPT
/// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
///
///
/// # Returns
///
/// * `LMModelOutput` containing:
/// - `lm_logits` - `Tensor` of shape (*batch size*, *sequence_length*, *vocab_size*) representing the logits for each vocab item and position
/// - `cache` - None
/// - `encoder_hidden_states` - None
/// - `all_hidden_states` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
/// - `all_attentions` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
///
/// # Example
///
/// ```no_run
/// # use tch::{nn, Device, Tensor, no_grad};
/// # use rust_bert::Config;
/// # use std::path::Path;
/// # use tch::kind::Kind::{Int64, Double};
/// use rust_bert::gpt2::Gpt2Config;
/// use rust_bert::openai_gpt::OpenAIGPTLMHeadModel;
/// use rust_bert::pipelines::generation_utils::Cache;
/// # let config_path = Path::new("path/to/config.json");
/// # let vocab_path = Path::new("path/to/vocab.txt");
/// # let device = Device::Cpu;
/// # let vs = nn::VarStore::new(device);
/// # let config = Gpt2Config::from_file(config_path);
/// # let mut gpt_model: OpenAIGPTLMHeadModel = OpenAIGPTLMHeadModel::new(&vs.root(), &config);
/// let (batch_size, sequence_length, past_sequence_length) = (64, 128, 56);
/// let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
/// let attention_mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
/// let token_type_ids = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
/// let position_ids = Tensor::arange(sequence_length, (Int64, device)).expand(&[batch_size, sequence_length], true);
///
/// let model_output = no_grad(|| {
/// gpt_model
/// .forward_t(Some(&input_tensor),
/// Cache::None,
/// Some(&attention_mask),
/// Some(&token_type_ids),
/// Some(&position_ids),
/// None,
/// None,
/// None,
/// false).unwrap()
/// });
/// ```
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
_layer_past: Cache,
attention_mask: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
_encoder_outputs: Option<&Tensor>,
_decoder_input_ids: Option<&Tensor>,
train: bool,
) -> Result<LMModelOutput, RustBertError> {
let base_model_output = self.transformer.forward_t(
input_ids,
attention_mask,
token_type_ids,
position_ids,
input_embeds,
train,
)?;
let lm_logits = base_model_output.hidden_state.apply(&self.lm_head);
Ok(LMModelOutput {
lm_logits,
cache: Cache::None,
})
}
}
/// Container for the OpenAI GPT model output.
pub struct OpenAiGptModelOutput {
/// Hidden state of the last layer of the decoder, or logits for a custom head
/// module after the decoder (e.g. vocabulary logits for language modeling tasks)
pub hidden_state: Tensor,
/// Hidden states for all intermediate layers
pub all_hidden_states: Option<Vec<Tensor>>,
/// Attention weights for all intermediate layers
pub all_attentions: Option<Vec<Tensor>>,
}
/// # Language generation model based on the GPT architecture
pub struct OpenAIGenerator {
model: OpenAIGPTLMHeadModel,
tokenizer: TokenizerOption,
var_store: nn::VarStore,
generate_config: GenerateConfig,
bos_token_id: Option<i64>,
eos_token_ids: Option<Vec<i64>>,
pad_token_id: Option<i64>,
is_encoder_decoder: bool,
vocab_size: i64,
decoder_start_id: Option<i64>,
max_position_embeddings: i64,
}
impl OpenAIGenerator {
/// Build a new `OpenAIGenerator`
///
/// # Arguments
///
/// * `generate_config` - `GenerateConfig` object containing the resource references (model, vocabulary, configuration), generation options and device placement (CPU/GPU)
///
/// # Example
///
/// ```no_run
/// # fn main() -> anyhow::Result<()> {
/// use rust_bert::openai_gpt::OpenAIGenerator;
/// use rust_bert::pipelines::generation_utils::GenerateConfig;
/// let generate_config = GenerateConfig {
/// max_length: Some(30),
/// do_sample: true,
/// num_beams: 5,
/// temperature: 1.1,
/// num_return_sequences: 3,
/// ..Default::default()
/// };
/// let gpt_generator = OpenAIGenerator::new(generate_config)?;
/// # Ok(())
/// # }
/// ```
pub fn new(generate_config: GenerateConfig) -> Result<OpenAIGenerator, RustBertError> {
let vocab_path = generate_config.vocab_resource.get_local_path()?;
let merges_path = generate_config
.merges_resource
.as_ref()
.ok_or_else(|| {
RustBertError::InvalidConfigurationError(
"GPT expects a merges resources to be provided".to_string(),
)
})?
.get_local_path()?;
let tokenizer = TokenizerOption::from_file(
ModelType::OpenAiGpt,
vocab_path.to_str().unwrap(),
Some(merges_path.to_str().unwrap()),
true,
None,
None,
)?;
Self::new_with_tokenizer(generate_config, tokenizer)
}
pub fn new_with_tokenizer(
generate_config: GenerateConfig,
tokenizer: TokenizerOption,
) -> Result<OpenAIGenerator, RustBertError> {
generate_config.validate();
let config_path = generate_config.config_resource.get_local_path()?;
let device = generate_config.device;
let mut var_store = nn::VarStore::new(device);
let config = Gpt2Config::from_file(config_path);
let model = OpenAIGPTLMHeadModel::new(var_store.root(), &config);
crate::resources::load_weights(
&generate_config.model_resource,
&mut var_store,
generate_config.kind,
device,
)?;
let bos_token_id = tokenizer.get_bos_id();
let eos_token_ids = tokenizer.get_eos_id().map(|id| vec![id]);
let pad_token_id = tokenizer.get_pad_id();
let is_encoder_decoder = false;
let vocab_size = config.vocab_size;
let decoder_start_id = config.decoder_start_token_id;
let max_position_embeddings = config.n_positions;
Ok(OpenAIGenerator {
model,
tokenizer,
var_store,
generate_config,
bos_token_id,
eos_token_ids,
pad_token_id,
is_encoder_decoder,
vocab_size,
decoder_start_id,
max_position_embeddings,
})
}
}
impl PrivateLanguageGenerator for OpenAIGenerator {
fn _get_tokenizer(&self) -> &TokenizerOption {
&self.tokenizer
}
fn _get_tokenizer_mut(&mut self) -> &mut TokenizerOption {
&mut self.tokenizer
}
fn get_device(&self) -> Device {
self.var_store.device()
}
fn get_var_store_mut(&mut self) -> Result<&mut nn::VarStore, RustBertError> {
Ok(&mut self.var_store)
}
fn get_config(&self) -> &GenerateConfig {
&self.generate_config
}
fn get_bos_id(&self) -> Option<i64> {
self.bos_token_id
}
fn get_eos_ids(&self) -> Option<&Vec<i64>> {
self.eos_token_ids.as_ref()
}
fn get_pad_id(&self) -> Option<i64> {
self.pad_token_id
}
fn is_encoder_decoder(&self) -> bool {
self.is_encoder_decoder
}
fn get_vocab_size(&self) -> i64 {
self.vocab_size
}
fn get_decoder_start_id(&self) -> Option<i64> {
self.decoder_start_id
}
fn get_max_positions_embeddings(&self) -> Option<i64> {
Some(self.max_position_embeddings)
}
fn forward_t(
&self,
input_ids: Option<&Tensor>,
_layer_past: Cache,
attention_mask: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
_encoder_outputs: Option<&Tensor>,
_decoder_input_ids: Option<&Tensor>,
train: bool,
) -> Result<LMModelOutput, RustBertError> {
self.model.forward_t(
input_ids,
_layer_past,
attention_mask,
token_type_ids,
position_ids,
input_embeds,
_encoder_outputs,
_decoder_input_ids,
train,
)
}
}
impl LanguageGenerator for OpenAIGenerator {}