1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
//!
//! Given a prompt, the model will return one or more predicted completions,
//! and can also return the probabilities of alternative tokens at each position.
//!
//! Source: OpenAI documentation
////////////////////////////////////////////////////////////////////////////////
use std::collections::HashMap;
use crate::openai::{
endpoint::{
endpoint_filter, request_endpoint, request_endpoint_stream, Endpoint, EndpointVariant,
},
types::{
common::Error,
completion::{Chunk, CompletionResponse},
model::Model,
},
};
use log::{debug, warn};
use serde::{Deserialize, Serialize};
use serde_with::serde_as;
/// Given a prompt, the model will return one or more predicted completions,
/// and can also return the probabilities of alternative tokens at each
/// position.
#[serde_as]
#[derive(Serialize, Deserialize, Debug)]
pub struct Completion {
/// ID of the model to use. You can use the [List models API](https://platform.openai.com/docs/api-reference/models/list) to see all of
/// your available models, or see our [Model overview](https://platform.openai.com/docs/models/overview) for descriptions of
/// them.
pub model: Model,
#[serde(skip_serializing_if = "Option::is_none")]
pub prompt: Option<Vec<String>>,
/// Whether to stream back partial progress. If set, tokens will be sent as
/// data-only [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format) as they become available, with the stream
/// terminated by a `data: [DONE]` message.
#[serde(skip_serializing_if = "Option::is_none")]
pub stream: Option<bool>,
/// The suffix that comes after a completion of inserted text.
pub suffix: Option<String>,
/// What sampling temperature to use, between 0 and 2. Higher values like 0.
/// 8 will make the output more random, while lower values like 0.2 will
/// make it more focused and deterministic.
///
/// We generally recommend altering this or `top_p` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub temperature: Option<f32>,
/// An alternative to sampling with temperature, called nucleus sampling,
/// where the model considers the results of the tokens with top_p
/// probability mass. So 0.1 means only the tokens comprising the top 10%
/// probability mass are considered.
///
/// We generally recommend altering this or `temperature` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub top_p: Option<f32>,
/// How many completions to generate for each prompt.
///
/// **Note**: Because this parameter generates many completions, it can quickly
/// consume your token quota. Use carefully and ensure that you have
/// reasonable settings for `max_tokens` and `stop`.
#[serde(skip_serializing_if = "Option::is_none")]
pub n: Option<u32>,
/// Include the log probabilities on the `logprobs` most likely tokens, as
/// well the chosen tokens. For example, if `logprobs` is 5, the API will
/// return a list of the 5 most likely tokens. The API will always return
/// the `logprob` of the sampled token, so there may be up to `logprobs+1`
/// elements in the response.
///
/// The maximum value for `logprobs` is 5. If you need more than this,
/// please contact us through our **Help center** and describe your use
/// case.
#[serde(skip_serializing_if = "Option::is_none")]
pub logprobs: Option<u32>,
/// Echo back the prompt in addition to the completion
#[serde(skip_serializing_if = "Option::is_none")]
pub echo: Option<Vec<bool>>,
/// Up to 4 sequences where the API will stop generating further tokens.
/// The returned text will not contain the stop sequence.
#[serde(skip_serializing_if = "Option::is_none")]
pub stop: Option<Vec<String>>,
/// The maximum number of [tokens](https://platform.openai.com/tokenizer) to generate in the completion.
///
/// The token count of your prompt plus `max_tokens` cannot exceed the
/// model's context length. Most models have a context length of 2048
/// tokens (except for the newest models, which support 4096).
#[serde(skip_serializing_if = "Option::is_none")]
pub max_tokens: Option<u32>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based
/// on whether they appear in the text so far, increasing the model's
/// likelihood to talk about new topics.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
#[serde(skip_serializing_if = "Option::is_none")]
pub presence_penalty: Option<f32>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based
/// on their existing frequency in the text so far, decreasing the model's
/// likelihood to repeat the same line verbatim.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
#[serde(skip_serializing_if = "Option::is_none")]
pub frequency_penalty: Option<f32>,
/// Generates `best_of` completions server-side and returns the "best" (the
/// one with the highest log probability per token). Results cannot be
/// streamed.
///
/// When used with `n`, `best_of` controls the number of candidate
/// completions and `n` specifies how many to return – `best_of` must be
/// greater than n.
///
/// **Note**: Because this parameter generates many completions, it can
/// quickly consume your token quota. Use carefully and ensure that you
/// have reasonable settings for `max_tokens` and `stop`.
#[serde_as(as = "Option<Vec<(_,_)>>")]
#[serde(skip_serializing_if = "Option::is_none")]
pub best_of: Option<HashMap<String, u32>>,
/// Modify the likelihood of specified tokens appearing in the completion.
///
/// Accepts a json object that maps tokens (specified by their token ID in
/// the GPT tokenizer) to an associated bias value from -100 to 100. You
/// can use this [tokenizer tool](https://platform.openai.com/tokenizer?view=bpe) (which works for both GPT-2 and GPT-3) to
/// convert text to token IDs. Mathematically, the bias is added to the
/// logits generated by the model prior to sampling. The exact effect will
/// vary per model, but values between -1 and 1 should decrease or increase
/// likelihood of selection; values like -100 or 100 should result in a
/// ban or exclusive selection of the relevant token.
///
/// As an example, you can pass `{"50256": -100}` to prevent the
/// <|endoftext|> token from being generated.
#[serde_as(as = "Option<Vec<(_,_)>>")]
#[serde(skip_serializing_if = "Option::is_none")]
pub logit_bias: Option<HashMap<String, f32>>,
/// A unique identifier representing your end-user, which can help OpenAI
/// to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
pub user: Option<String>,
}
impl Default for Completion {
fn default() -> Self {
Self {
model: Model::TEXT_DAVINCI_003,
prompt: None,
stream: Some(false),
temperature: None,
top_p: None,
n: None,
stop: None,
max_tokens: None,
presence_penalty: None,
frequency_penalty: None,
logit_bias: None,
user: None,
suffix: None,
logprobs: None,
echo: None,
best_of: None,
}
}
}
impl Completion {
/// Add message to prompt.
///
/// # Arguments
/// - `content` - Message content
pub fn add_prompt(&mut self, content: &str) {
if let None = self.prompt {
self.prompt = Some(vec![]);
}
self.prompt.as_mut().unwrap().push(String::from(content));
}
/// Send completion request to OpenAI using streamed method.
pub async fn completion_streamed<F>(
&self,
mut cb: Option<F>,
) -> Result<Vec<Chunk>, Box<dyn std::error::Error>>
where
F: FnMut(Chunk),
{
if let Some(false) = self.stream {
return Err("Cannot call streaming API when `stream` disabled.".into());
}
if !endpoint_filter(&self.model, &Endpoint::Completion_v1) {
return Err("Model not compatible with this endpoint".into());
}
let mut ret_val: Vec<Chunk> = vec![];
request_endpoint_stream(&self, &Endpoint::Completion_v1, EndpointVariant::None,|res| {
if let Ok(chunk_data_raw) = res {
chunk_data_raw.split("\n").for_each(|chunk_data| {
let chunk_data = chunk_data.trim().to_string();
if &chunk_data == "data: [DONE]" {
debug!(target: "openai", "Last chunk received.");
return;
}
if chunk_data.starts_with("data: ") {
// Strip response content:
let stripped_chunk = &chunk_data.trim()[6..];
if let Ok(message_chunk) = serde_json::from_str::<Chunk>(stripped_chunk) {
ret_val.push(message_chunk.clone());
if let Some(cb) = &mut cb {
cb(message_chunk);
}
} else {
if let Ok(response_error) = serde_json::from_str::<Error>(&stripped_chunk) {
warn!(target: "openai",
"OpenAI error code {}: `{:?}`",
response_error.error.code.unwrap_or(0),
stripped_chunk
);
} else {
warn!(target: "openai", "Completion response not deserializable.");
}
}
}
});
}
})
.await?;
Ok(ret_val)
}
/// Send completion request to OpenAI.
pub async fn completion(&self) -> Result<CompletionResponse, Box<dyn std::error::Error>> {
if let Some(true) = self.stream {
return Err("Cannot call non-streaming API when `stream` enabled.".into());
}
if !endpoint_filter(&self.model, &Endpoint::Completion_v1) {
return Err("Model not compatible with this endpoint".into());
}
let mut completion_response: Option<CompletionResponse> = None;
request_endpoint(&self, &Endpoint::Completion_v1, EndpointVariant::None, |res| {
if let Ok(text) = res {
if let Ok(response_data) = serde_json::from_str::<CompletionResponse>(&text) {
debug!(target: "openai", "Response parsed, completion response deserialized.");
completion_response = Some(response_data);
} else {
if let Ok(response_error) = serde_json::from_str::<Error>(&text) {
warn!(target: "openai",
"OpenAI error code {}: `{:?}`",
response_error.error.code.unwrap_or(0),
text
);
} else {
warn!(target: "openai", "Completion response not deserializable.");
}
}
}
})
.await?;
if let Some(response_data) = completion_response {
Ok(response_data)
} else {
Err("No response or error parsing response".into())
}
}
}