1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
//!
//! Given a chat conversation, the model will return a chat completion response.
//!
//! Source: OpenAI documentation

////////////////////////////////////////////////////////////////////////////////

use std::collections::HashMap;

use crate::openai::{
    endpoint::{
        endpoint_filter, request_endpoint, request_endpoint_stream, Endpoint, EndpointVariant,
    },
    types::{
        chat_completion::{ChatCompletionResponse, ChatMessage, Chunk, MessageRole},
        common::Error,
        Model,
    },
};
use log::{debug, warn};
use serde::{Deserialize, Serialize};
use serde_with::serde_as;

/// Given a chat conversation, the model will return a chat completion response.
#[serde_as]
#[derive(Serialize, Deserialize, Debug)]
pub struct ChatCompletion {
    pub model: Model,

    pub messages: Vec<ChatMessage>,

    #[serde(skip_serializing_if = "Option::is_none")]
    pub stream: Option<bool>,

    #[serde(skip_serializing_if = "Option::is_none")]
    pub temperature: Option<f32>,

    #[serde(skip_serializing_if = "Option::is_none")]
    pub top_p: Option<f32>,

    #[serde(skip_serializing_if = "Option::is_none")]
    pub n: Option<u32>,

    #[serde(skip_serializing_if = "Option::is_none")]
    pub stop: Option<Vec<String>>,

    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_tokens: Option<u32>,

    #[serde(skip_serializing_if = "Option::is_none")]
    pub presence_penalty: Option<f32>,

    #[serde(skip_serializing_if = "Option::is_none")]
    pub frequency_penalty: Option<f32>,

    #[serde_as(as = "Option<Vec<(_,_)>>")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub logit_bias: Option<HashMap<String, f32>>,

    #[serde(skip_serializing_if = "Option::is_none")]
    pub user: Option<String>,
}

impl Default for ChatCompletion {
    fn default() -> Self {
        Self {
            model: Model::GPT_3_5_TURBO,
            messages: vec![],
            stream: Some(false),
            temperature: None,
            top_p: None,
            n: None,
            stop: None,
            max_tokens: None,
            presence_penalty: None,
            frequency_penalty: None,
            logit_bias: None,
            user: None,
        }
    }
}

impl ChatCompletion {
    /// ID of the model to use. See the [model endpoint compatibility](https://platform.openai.com/docs/models/model-endpoint-compatibility) table
    /// for details on which models work with the Chat API.
    ///
    /// # Argument
    /// - `model` - Target model to make use of
    pub fn model(self, model: Model) -> Self {
        Self { model, ..self }
    }

    /// Add message to prompt by role and content.
    ///
    /// The messages to generate chat completions for, in the [chat format](https://platform.openai.com/docs/guides/chat/introduction).
    ///
    /// # Arguments
    /// - `role` - Message role enum variant
    /// - `content` - Message content
    pub fn message(self, role: MessageRole, content: &str) -> Self {
        let mut messages = if self.messages.len() == 0 {
            vec![]
        } else {
            self.messages
        };
        messages.push(ChatMessage::new(role, content));

        Self {
            messages: messages,
            ..self
        }
    }

    /// Add message to prompt by message instance.
    ///
    /// The messages to generate chat completions for, in the [chat format](https://platform.openai.com/docs/guides/chat/introduction).
    ///
    /// # Argument
    /// - `messages` - Message instance vector, will replace all existing
    ///     messages
    pub fn messages(self, messages: Vec<ChatMessage>) -> Self {
        Self { messages, ..self }
    }

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.
    /// 8 will make the output more random, while lower values like 0.2 will
    /// make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    pub fn temperature(self, temperature: f32) -> Self {
        Self {
            temperature: Some(temperature),
            ..self
        }
    }

    /// An alternative to sampling with temperature, called nucleus sampling,
    /// where the model considers the results of the tokens with top_p
    /// probability mass. So 0.1 means only the tokens comprising the top 10%
    /// probability mass are considered.
    ///
    /// We generally recommend altering this or `temperature` but not both.
    pub fn top_p(self, top_p: f32) -> Self {
        Self {
            top_p: Some(top_p),
            ..self
        }
    }

    /// How many chat completion choices to generate for each input message.
    pub fn n(self, n: u32) -> Self {
        Self { n: Some(n), ..self }
    }

    /// Up to 4 sequences where the API will stop generating further tokens.
    pub fn stop(self, stop: Vec<String>) -> Self {
        Self {
            stop: Some(stop),
            ..self
        }
    }

    // The maximum number of [tokens](https://platform.openai.com/tokenizer) to generate in the chat completion.
    ///
    /// The total length of input tokens and generated tokens is limited by the
    /// model's context length.
    pub fn max_tokens(self, max_tokens: u32) -> Self {
        Self {
            max_tokens: Some(max_tokens),
            ..self
        }
    }

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based
    /// on whether they appear in the text so far, increasing the model's
    /// likelihood to talk about new topics.
    ///
    /// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
    pub fn presence_penalty(self, presence_penalty: f32) -> Self {
        Self {
            presence_penalty: Some(presence_penalty),
            ..self
        }
    }

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based
    /// on their existing frequency in the text so far, decreasing the model's
    /// likelihood to repeat the same line verbatim.
    ///
    /// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
    pub fn frequency_penalty(self, frequency_penalty: f32) -> Self {
        Self {
            frequency_penalty: Some(frequency_penalty),
            ..self
        }
    }

    /// Modify the likelihood of specified tokens appearing in the completion.
    ///
    /// Accepts a json object that maps tokens (specified by their token ID in
    /// the tokenizer) to an associated bias value from -100 to 100.
    /// Mathematically, the bias is added to the logits generated by the model
    /// prior to sampling. The exact effect will vary per model, but values
    /// between -1 and 1 should decrease or increase likelihood of selection;
    /// values like -100 or 100 should result in a ban or exclusive selection
    /// of the relevant token.
    pub fn logit_bias(self, logit_bias: HashMap<String, f32>) -> Self {
        Self {
            logit_bias: Some(logit_bias),
            ..self
        }
    }
    
    /// A unique identifier representing your end-user, which can help OpenAI
    /// to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
    pub fn user(self, user: &str) -> Self {
        Self {
            user: Some(user.into()),
            ..self
        }
    }

    /// Send chat completion request to OpenAI using streamed method.
    ///
    /// Partial message deltas will be sent, like in ChatGPT. Tokens
    /// will be sent as data-only [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format) as they become available,
    /// with the stream terminated by a `data: [DONE]` message. See the OpenAI
    /// Cookbook for [example code](https://github.com/openai/openai-cookbook/blob/main/examples/How_to_stream_completions.ipynb).
    pub async fn streamed_completion(
        self,
        mut cb: Option<impl FnMut(Chunk)>,
    ) -> Result<Vec<Chunk>, Box<dyn std::error::Error>> {
        let data = Self {
            stream: Some(true),
            ..self
        };

        if !endpoint_filter(&data.model, &Endpoint::ChatCompletion_v1) {
            return Err("Model not compatible with this endpoint".into());
        }

        let mut ret_val: Vec<Chunk> = vec![];
        let ret_val_ref = &mut ret_val;

        request_endpoint_stream(
            &data,
            &Endpoint::ChatCompletion_v1,
            EndpointVariant::None,
            |res| {
                if let Ok(chunk_data_raw) = res {
                    for chunk_data in chunk_data_raw.split("\n") {
                    let chunk_data = chunk_data.trim().to_string();
                    if &chunk_data == "data: [DONE]" {
                        debug!(target: "openai", "Last chunk received.");
                        return;
                    }
                    if chunk_data.starts_with("data: ") {
                        // Strip response content:
                        let stripped_chunk = &chunk_data.trim()[6..];
                        if let Ok(message_chunk) = serde_json::from_str::<Chunk>(stripped_chunk) {
                            ret_val_ref.push(message_chunk.clone());
                            if let Some(cb) = &mut cb {
                                cb(message_chunk);
                            }
                        } else {
                            if let Ok(response_error) =
                                serde_json::from_str::<Error>(&stripped_chunk)
                            {
                                warn!(target: "openai",
                                    "OpenAI error code {}: `{:?}`",
                                    response_error.error.code.unwrap_or(0),
                                    stripped_chunk
                                );
                            } else {
                                warn!(target: "openai", "Completion response not deserializable.");
                            }
                        }
                    }
                };
                }
            },
        )
        .await?;

        Ok(ret_val)
    }

    /// Send chat completion request to OpenAI.
    pub async fn completion(self) -> Result<ChatCompletionResponse, Box<dyn std::error::Error>> {
        let data = Self {
            stream: None,
            ..self
        };

        if !endpoint_filter(&data.model, &Endpoint::ChatCompletion_v1) {
            return Err("Model not compatible with this endpoint".into());
        }

        let mut completion_response: Option<ChatCompletionResponse> = None;

        request_endpoint(&data, &Endpoint::ChatCompletion_v1, EndpointVariant::None, |res| {
            if let Ok(text) = res {
                if let Ok(response_data) = serde_json::from_str::<ChatCompletionResponse>(&text) {
                    debug!(target: "openai", "Response parsed, completion response deserialized.");
                    completion_response = Some(response_data);
                } else {
                    if let Ok(response_error) = serde_json::from_str::<Error>(&text) {
                        warn!(target: "openai",
                            "OpenAI error code {}: `{:?}`",
                            response_error.error.code.unwrap_or(0),
                            text
                        );
                    } else {
                        warn!(target: "openai", "Completion response not deserializable.");
                    }
                }
            }
        })
        .await?;

        if let Some(response_data) = completion_response {
            Ok(response_data)
        } else {
            Err("No response".into())
        }
    }
}