1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
mod f32;
pub use self::f32::*;
mod f64;
pub use self::f64::*;
mod i8;
pub use self::i8::*;
mod i16;
pub use self::i16::*;
mod i32;
pub use self::i32::*;
mod i64;
pub use self::i64::*;
mod i128;
pub use self::i128::*;
mod u8;
pub use self::u8::*;
mod u16;
pub use self::u16::*;
mod u32;
pub use self::u32::*;
mod u64;
pub use self::u64::*;
mod u128;
pub use self::u128::*;
use crate::{der, wrt};
// Utils
// -------------------------------------------------------------------
/// Gets cumulative derivative for given expression for a given input variable (only supports literals and paths).
///
/// This is difficult to explain here.
///
/// In practical application we unwrap all statements such that `let e=2.*b+d;` becomes 2
/// statements `let _e=2.*b;` and `let e=_e+d;`, when we do this can optimize this
/// function, instead of needing to do `d/db(2.*b+d)` and `d/dd(2.*b+d)` we can
/// simply know in an addition if the component is a variable the deriative is `1.`
/// since `d/d_e(_e+d)` and `d/d_d(_e+d)` are both 1, thus we know the result
/// for an input `x` would be `1.*_e_x + 1.*d_x` simply `_e_x + d_x`.
///
/// In this optimization we apply this function t0o each component (e.g. `_e`, `d` etc.) seperately
/// with 4 possible results for each:
/// 1. Where the component is a literal (not a variable) it is simply `0.`,
/// 2. Where the component is not a function input, we get the cumulative deriative for this
/// variable with respect to our function input (e.g. `_e_x`).
/// 3. Where the component is an input and we looking at the cumulative derivative for this input it
/// is our seed input cumulative derivative e.g. `_x` since `1. * _x`.
/// 4. Where the component is an input, but we are not looking at the cumulative derivative for this
/// input, it is `0.` since we don't have cumulative deriatives for inputs with respect to each
/// other with `1. * x_wrt_y`, `x_wrt_y` doens't exist and we presume inputs independant.
pub enum Arg {
/// e.g. `a`
Variable(String),
/// e.g. `7.3f32`
Literal(String),
}
impl std::fmt::Display for Arg {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Variable(s) => write!(f, "{}", s),
Self::Literal(s) => write!(f, "{}", s),
}
}
}
impl TryFrom<&syn::Expr> for Arg {
type Error = &'static str;
fn try_from(expr: &syn::Expr) -> Result<Self, Self::Error> {
match expr {
syn::Expr::Lit(l) => match &l.lit {
syn::Lit::Int(int) => Ok(Self::Literal(int.to_string())),
syn::Lit::Float(float) => Ok(Self::Literal(float.to_string())),
_ => Err("Unsupported literal type argument"),
},
syn::Expr::Path(p) => Ok(Self::Variable(p.path.segments[0].ident.to_string())),
_ => Err("Non literal or path argument"),
}
}
}
/// Forward General Derivative type
pub type FgdType = fn(&[String], String, &[Arg]) -> syn::Stmt;
/// Derivative function type
pub type DFn = fn(&[Arg]) -> String;
/// Forward general deriviative
/// ```ignore
/// static outer_test: FgdType = {
/// const base_fn: DFn = |args:&[String]| -> String { format!("{0}-{1}",args[0],args[1]) };
/// const exponent_fn: DFn = |args:&[String]| -> String { format!("{0}*{1}+{0}",args[0],args[1]) };
/// fgd::<"0f32",{&[base_fn, exponent_fn]}>
/// };
/// ```
/// Is equivalent to
/// ```ignore
/// forward_derivative_macro!(outer_test,"0f32","{0}-{1}","{0}*{1}+{0}");
/// ```
pub fn fgd<const DEFAULT: &'static str, const TRANSLATION_FUNCTIONS: &'static [DFn]>(
outer_fn_args: &[String],
local_ident: String,
args: &[Arg],
) -> syn::Stmt {
assert_eq!(args.len(), TRANSLATION_FUNCTIONS.len());
// Gets vec of deriative idents and derivative functions
let (idents, deriatives) = outer_fn_args
.iter()
.map(|outer_fn_input| {
let acc = args
.iter()
.zip(TRANSLATION_FUNCTIONS.iter())
.map(|(arg,t)|
// See the docs for cumulative (these if's accomplish the same-ish thing)
// TODO Improve docs here directly
match arg {
Arg::Literal(_) => DEFAULT.to_string(),
Arg::Variable(v) => {
let (a,b) = (
t(args),
if v == outer_fn_input {
der!(outer_fn_input)
} else if outer_fn_args.contains(v) {
DEFAULT.to_string()
} else {
wrt!(arg,outer_fn_input)
});
// eprintln!("a: {}, b: {}",a,b);
format!("({})*{}",a,b)
}
})
.intersperse(String::from("+"))
.collect::<String>();
(wrt!(local_ident, outer_fn_input), acc)
})
.unzip::<_, _, Vec<_>, Vec<_>>();
// eprintln!("idents: {:?}",idents);
// eprintln!("deriatives: {:?}",deriatives);
// Converts vec's to strings
let (idents, deriatives) = (
idents
.into_iter()
.intersperse(String::from(","))
.collect::<String>(),
deriatives
.into_iter()
.intersperse(String::from(","))
.collect::<String>(),
);
// eprintln!("idents: {}",idents);
// eprintln!("deriatives: {}",deriatives);
let stmt_str = format!("let ({}) = ({});", idents, deriatives);
// eprintln!("stmt_str: {}",stmt_str);
syn::parse_str(&stmt_str).expect("fgd: parse fail")
}