1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*
Copyright 2016 Martin Buck
This file is part of rust-3d.
rust-3d is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
rust-3d is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with rust-3d.  If not, see <http://www.gnu.org/licenses/>.
*/

use result::*;
use point_3d::Point3D;
use traits::is_3d::Is3D;
use traits::is_buildable_3d::IsBuildable3D;
use functions::cross;

pub struct Matrix4 {
    pub data: [[f64; 4]; 4]
}

impl Matrix4 {
    pub fn new() -> Matrix4 {
        Matrix4{
            data: [
                [1.0, 0.0, 0.0, 0.0],
                [0.0, 1.0, 0.0, 0.0],
                [0.0, 0.0, 1.0, 0.0],
                [0.0, 0.0, 0.0, 1.0]
            ]
        }
    }

    pub fn zeroes() -> Matrix4 {
        Matrix4{
            data: [
                [0.0, 0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0, 0.0]
            ]
        }
    }

    pub fn translation(x: f64, y: f64, z: f64) -> Matrix4 {
        Matrix4{
            data: [
                [1.0, 0.0, 0.0, x],
                [0.0, 1.0, 0.0, y],
                [0.0, 0.0, 1.0, z],
                [0.0, 0.0, 0.0, 1.0]
            ]
        }
    }

    pub fn scale(x: f64, y: f64, z: f64) -> Matrix4 {
        Matrix4{
            data: [
                [x,   0.0, 0.0, 0.0],
                [0.0, y,   0.0, 0.0],
                [0.0, 0.0, z,   0.0],
                [0.0, 0.0, 0.0, 1.0]
            ]
        }
    }

    pub fn rotation(rad_x: f64, rad_y: f64, rad_z: f64) -> Matrix4 {
        let (mut mx, mut my, mut mz) = (Matrix4::new(), Matrix4::new(), Matrix4::new());

        mx.data[0][0] = 1.0;     mx.data[0][1] = 0.0;           mx.data[0][2] = 0.0;            mx.data[0][3] = 0.0;
        mx.data[1][0] = 0.0;     mx.data[1][1] = rad_x.cos();    mx.data[1][2] = -rad_x.sin();    mx.data[1][3] = 0.0;
        mx.data[2][0] = 0.0;     mx.data[2][1] = rad_x.sin();    mx.data[2][2] = rad_x.cos();     mx.data[2][3] = 0.0;
        mx.data[3][0] = 0.0;     mx.data[3][1] = 0.0;           mx.data[3][2] = 0.0;            mx.data[3][3] = 1.0;

        my.data[0][0] = rad_y.cos();     my.data[0][1] = 0.0;      my.data[0][2] = rad_y.sin();   my.data[0][3] = 0.0;
        my.data[1][0] = 0.0;            my.data[1][1] = 1.0;      my.data[1][2] = 0.0;          my.data[1][3] = 0.0;
        my.data[2][0] = -rad_y.sin();    my.data[2][1] = 0.0;      my.data[2][2] = rad_y.cos();   my.data[2][3] = 0.0;
        my.data[3][0] = 0.0;            my.data[3][1] = 0.0;      my.data[3][2] = 0.0;          my.data[3][3] = 1.0;

        mz.data[0][0] = rad_z.cos(); mz.data[0][1] = -rad_z.sin();    mz.data[0][2] = 0.0;      mz.data[0][3] = 0.0;
        mz.data[1][0] = rad_z.sin(); mz.data[1][1] = rad_z.cos();     mz.data[1][2] = 0.0;      mz.data[1][3] = 0.0;
        mz.data[2][0] = 0.0;        mz.data[2][1] = 0.0;            mz.data[2][2] = 1.0;      mz.data[2][3] = 0.0;
        mz.data[3][0] = 0.0;        mz.data[3][1] = 0.0;            mz.data[3][2] = 0.0;      mz.data[3][3] = 1.0;

        mx.multiply_m(&my.multiply_m(&mz))
    }

    ///@todo wont have to be of type option once uvec implemented
    pub fn rotation_axis<P>(axis: &P, rad: f64) -> Result<Matrix4> where
        P: IsBuildable3D {

        let u = match axis.clone().normalized() {
          Err(x) => return Err(x),
          Ok(x) => x
        };

        let mut result = Matrix4::new();
        //@todo needs testing!!!
        result.data[0][0] = rad.cos() + u.x()*u.x()*(1.0 - rad.cos());          result.data[0][1] = u.x()*u.y()*(1.0 -rad.cos()) - u.z()*rad.sin();     result.data[0][2] = u.x()*u.z()*(1.0 - rad.cos()) + u.y()*rad.sin();    result.data[0][3] = 0.0;
        result.data[1][0] = u.y()*u.x()*(1.0 - rad.cos()) + u.z()*rad.sin();    result.data[1][1] = rad.cos() + u.y()*u.y()*(1.0 - rad.cos());          result.data[1][2] = u.y()*u.z()*(1.0 - rad.cos()) - u.x()*rad.sin();    result.data[1][3] = 0.0;
        result.data[2][0] = u.z()*u.x()*(1.0 - rad.cos()) - u.y()*rad.sin();    result.data[2][1] = u.z()*u.y()*(1.0 - rad.cos()) + u.x()*rad.sin();    result.data[2][2] = rad.cos() + u.z()*u.z()*(1.0 - rad.cos());          result.data[2][3] = 0.0;
        result.data[3][0] = 0.0;                                                result.data[3][1] = 0.0;                                                result.data[3][2] = 0.0;                                                result.data[3][3] = 1.0;
        Ok(result)
    }

    pub fn perspective(close: f64, away: f64, fov_rad: f64) -> Matrix4 {
        let range = close - away;
        let tan_fov_half = (fov_rad/2.0).tan();

        let mut result = Matrix4::new();
        result.data[0][0] = 1.0 / (tan_fov_half * away);  result.data[0][1] = 0.0;               result.data[0][2] = 0.0;                      result.data[0][3] = 0.0;
        result.data[1][0] = 0.0;                        result.data[1][1] = 1.0 / tan_fov_half;  result.data[1][2] = 0.0;                      result.data[1][3] = 0.0;
        result.data[2][0] = 0.0;                        result.data[2][1] = 0.0;               result.data[2][2] = (-close - away) / range;  result.data[2][3] = 2.0 * away * close / range;
        result.data[3][0] = 0.0;                        result.data[3][1] = 0.0;               result.data[3][2] = 1.0;                      result.data[3][3] = 1.0;
        result
    }

    //@todo require normalized vectors in these functions
    pub fn look_at<P>(target: &P, up: &P) -> Result<Matrix4> where
        P: IsBuildable3D { //@todo wont have to be an option once unitvector is defined whis is always l > 0 ( l == 1)

        let n = match target.clone().normalized() {
          Err(x) => return Err(x),
          Ok(x) => x
        };
        let u: Point3D;
        u = match up.clone().normalized() {
          Err(x) => return Err(x),
          Ok(x) => {
              let mut result = *Point3D::new(); //@todo can be dropped?
              result.from(*(cross(&*x, target)));
              result
          }
        };
        let v = cross(&*n, &u);

        let mut result = Matrix4::new();
        result.data[0][0] = u.x();  result.data[0][1] = u.y();  result.data[0][2] = u.z();  result.data[0][3] = 0.0;
        result.data[1][0] = v.x();  result.data[1][1] = v.y();  result.data[1][2] = v.z();  result.data[1][3] = 0.0;
        result.data[2][0] = n.x();  result.data[2][1] = n.y();  result.data[2][2] = n.z();  result.data[2][3] = 0.0;
        result.data[3][0] = 0.0;  result.data[3][1] = 0.0;  result.data[3][2] = 0.0;  result.data[3][3] = 1.0;
        Ok(result)
    }

    pub fn multiply_m(&self, other: &Matrix4) -> Matrix4 {
        let mut result = Matrix4::new();
        for i in 0..4 {
            for j in 0..4 {
                result.data[i][j] =
                    self.data[i][0] * other.data[0][j] +
				    self.data[i][1] * other.data[1][j] +
				    self.data[i][2] * other.data[2][j] +
				    self.data[i][3] * other.data[3][j];
            }
        }
        result
    }

    pub fn multiply_f(&self, other: f64) -> Matrix4 {
        let mut result = Matrix4::new();
        for i in 0..4 {
            for j in 0..4 {
                result.data[i][j] = other * self.data[i][j];
            }
        }
        result
    }
}