1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*
Copyright 2017 Martin Buck

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall
be included all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/

//! BoundingBox3D, an axis aligned bounding box within 3D space

use prelude::*;

#[derive (Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
/// BoundingBox3D, an axis aligned bounding box within 3D space
pub struct BoundingBox3D {
    min: Point3D,
    max: Point3D
}

impl BoundingBox3D {
    /// Creates a new BoundingBox3D with the given min and max positions
    pub fn new<P1, P2>(min: &P1, max: &P2) -> Result<BoundingBox3D> where
        P1: Is3D,
        P2: Is3D {

        if min.x() == max.x() || min.y() == max.y() || min.z() == max.z() {
            Err(ErrorKind::MinMaxEqual)
        } else if min.x() > max.x() || min.y() > max.y() || min.z() > max.z() {
            Err(ErrorKind::MinMaxSwapped)
        } else {
            Ok(BoundingBox3D{min: Point3D{x: min.x(), y: min.y(), z: min.z()}, max: Point3D{x: max.x(), y: max.y(), z: max.z()}})
        }
    }
    /// Creates a new BoundBox3D which contains all the given positions
    pub fn from_iterator<'a, It3D,P>(source: It3D) -> Result<BoundingBox3D> where
        It3D: IntoIterator<Item=&'a P>,
        P: 'a + Is3D + Sized {

        let mut count = 0;

        let mut minx : f64 = 0.0;
        let mut miny : f64 = 0.0;
        let mut minz : f64 = 0.0;
        let mut maxx : f64 = 0.0;
        let mut maxy : f64 = 0.0;
        let mut maxz : f64 = 0.0;

        for p in source {
            if count == 0 {
                minx = p.x();
                miny = p.y();
                minz = p.z();
                maxx = p.x();
                maxy = p.y();
                maxz = p.z();
                count += 1;
                continue;
            }
            if p.x() < minx { minx = p.x(); }
            if p.y() < miny { miny = p.y(); }
            if p.z() < minz { minz = p.z(); }
            if p.x() > maxx { maxx = p.x(); }
            if p.y() > maxy { maxy = p.y(); }
            if p.z() > maxz { maxz = p.z(); }
            count += 1;
        }
        if count >= 2 {
            Self::new(&Point3D{x: minx, y: miny, z: minz}, &Point3D{x: maxx, y: maxy, z: maxz})
        } else {
            Err(ErrorKind::TooFewPoints)
        }
    }
    /// Returns the minimum position of the bounding box
    pub fn min_p(&self) -> Point3D {
        self.min.clone()
    }
    /// Returns the maximum position of the bounding box
    pub fn max_p(&self) -> Point3D {
        self.max.clone()
    }
    /// Returns the size the bounding box within the x-dimension
    pub fn size_x(&self) -> Positive {
        Positive::new((self.max.x() - self.min.x()).abs()).unwrap() //safe since constrain enforced on construction
    }
    /// Returns the size the bounding box within the y-dimension
    pub fn size_y(&self) -> Positive {
        Positive::new((self.max.y() - self.min.y()).abs()).unwrap() //safe since constrain enforced on construction
    }
    /// Returns the size the bounding box within the z-dimension
    pub fn size_z(&self) -> Positive {
        Positive::new((self.max.z() - self.min.z()).abs()).unwrap() //safe since constrain enforced on construction
    }
    /// Returns the center of the bounding box
    pub fn center_bb(&self) -> Point3D {
        Point3D{x: self.min.x() + (self.max.x() - self.min.x()) / 2.0,
                y: self.min.y() + (self.max.y() - self.min.y()) / 2.0,
                z: self.min.z() + (self.max.z() - self.min.z()) / 2.0}
    }
    /// Tests whether this bounding box is within the other
    pub fn is_inside(&self, other: &BoundingBox3D) -> bool {
           self.min.x() > other.min.x()
        && self.min.y() > other.min.y()
        && self.min.z() > other.min.z()
        && self.max.x() < other.max.x()
        && self.max.y() < other.max.y()
        && self.max.z() < other.max.z()
    }
    /// Tests whether this bounding box contains a position
    pub fn contains<P>(&self, other: &P) -> bool where
        Self: Sized, P: Is3D {

           other.x() > self.min.x()
        && other.x() < self.max.x()
        && other.y() > self.min.y()
        && other.y() < self.max.y()
        && other.z() > self.min.z()
        && other.z() < self.max.z()
    }
    /// Tests whether this bounding box contains the other
    pub fn has_inside(&self, other: &BoundingBox3D) -> bool {
           self.min.x() < other.min.x()
        && self.min.y() < other.min.y()
        && self.min.z() < other.min.z()
        && self.max.x() > other.max.x()
        && self.max.y() > other.max.y()
        && self.max.z() > other.max.z()
    }
    /// Tests whether this bounding box and the other overlap in any way
    pub fn collides_with(&self, other: &BoundingBox3D) -> bool {
           2.0 * self.center_bb().x - other.center_bb().x < ((self.size_x() + other.size_x()).get())
        && 2.0 * self.center_bb().y - other.center_bb().y < ((self.size_y() + other.size_y()).get())
        && 2.0 * self.center_bb().z - other.center_bb().z < ((self.size_z() + other.size_z()).get())
    }
    /// Tests whether this bounding box crosses a certain x value
    pub fn crossing_x_value(&self, x: f64) -> bool {
        self.min.x() < x && self.max.x() > x
    }
    /// Tests whether this bounding box crosses a certain y value
    pub fn crossing_y_value(&self, y: f64) -> bool {
        self.min.y() < y && self.max.y() > y
    }
    /// Tests whether this bounding box crosses a certain z value
    pub fn crossing_z_value(&self, z: f64) -> bool {
        self.min.z() < z && self.max.z() > z
    }
}

impl Default for BoundingBox3D {
    fn default() -> Self {
        BoundingBox3D {min: Point3D {x: -0.5, y: -0.5, z: -0.5}, max: Point3D {x: 0.5, y: 0.5, z: 0.5}}
    }
}

impl HasBoundingBox3D for BoundingBox3D {
    fn bounding_box(&self) -> Result<BoundingBox3D> {
        BoundingBox3D::new(&self.min, &self.max)
    }
}

impl HasDistanceTo<BoundingBox3D> for BoundingBox3D {
    fn sqr_distance(&self, other: &BoundingBox3D) -> NonNegative {
        let mut dx = 0.0;
        let mut dy = 0.0;
        let mut dz = 0.0;

        if other.max_p().x() < self.min_p().x() {
            dx = other.max_p().x() - self.min_p().x();
        }
        else if other.min_p().x() > self.max_p().x() {
            dx = other.min_p().x() - self.max_p().x();
        }

        if other.max_p().y() < self.min_p().y() {
            dy = other.max_p().y() - self.min_p().y();
        }
        else if other.min_p().y() > self.max_p().y() {
            dy = other.min_p().y() - self.max_p().y();
        }

        if other.max_p().z() < self.min_p().z() {
            dz = other.max_p().z() - self.min_p().z();
        }
        else if other.min_p().z() > self.max_p().z() {
            dz = other.min_p().z() - self.max_p().z();
        }

        NonNegative::new(dx*dx + dy*dy + dz*dz).unwrap()
    }
}

impl IsScalable for BoundingBox3D {
    fn scale(&mut self, factor: Positive) {
        let c = self.center_bb();
        let min_x = c.x - (0.5 * factor.get() * self.size_x().get());
        let max_x = c.x + (0.5 * factor.get() * self.size_x().get());
        let min_y = c.y - (0.5 * factor.get() * self.size_y().get());
        let max_y = c.y + (0.5 * factor.get() * self.size_y().get());
        let min_z = c.z - (0.5 * factor.get() * self.size_z().get());
        let max_z = c.z + (0.5 * factor.get() * self.size_z().get());

        self.min.set_pos(min_x, min_y, min_z);
        self.max.set_pos(max_x, max_y, max_z);
    }
}

impl IsMergeable for BoundingBox3D {
    fn consume(&mut self, other: Self) {
        let (mut min_x, mut min_y, mut min_z) = (self.min.x(), self.min.y(), self.min.z());
        let (mut max_x, mut max_y, mut max_z) = (self.max.x(), self.max.y(), self.max.z());

        if other.min.x() < min_x { min_x = other.min.x() }
        if other.min.y() < min_y { min_y = other.min.y() }
        if other.min.z() < min_z { min_z = other.min.z() }

        if other.max.x() > max_x { max_x = other.max.x() }
        if other.max.y() > max_y { max_y = other.max.y() }
        if other.max.z() > max_z { max_z = other.max.z() }

        self.min.set_pos(min_x, min_y, min_z);
        self.max.set_pos(max_x, max_y, max_z);
    }

    fn combine(&self, other: &Self) -> Self {
        let (mut min_x, mut min_y, mut min_z) = (self.min.x(), self.min.y(), self.min.z());
        let (mut max_x, mut max_y, mut max_z) = (self.max.x(), self.max.y(), self.max.z());

        if other.min.x() < min_x { min_x = other.min.x() }
        if other.min.y() < min_y { min_y = other.min.y() }
        if other.min.z() < min_z { min_z = other.min.z() }

        if other.max.x() > max_x { max_x = other.max.x() }
        if other.max.y() > max_y { max_y = other.max.y() }
        if other.max.z() > max_z { max_z = other.max.z() }

        let min = Point3D::new(min_x, min_y, min_z);
        let max = Point3D::new(max_x, max_y, max_z);

        BoundingBox3D{min, max}
    }
}