Function russell_lab::eigen_decomp [−][src]
pub fn eigen_decomp(
l_real: &mut [f64],
l_imag: &mut [f64],
v_real: &mut Matrix,
v_imag: &mut Matrix,
a: &mut Matrix
) -> Result<(), &'static str>Expand description
Performs the eigen-decomposition of a square matrix
Computes the eigenvalues l and right eigenvectors v, such that:
a ⋅ vj = lj ⋅ vjwhere lj is the component j of l and vj is the column j of v.
Output
l_real– (m) eigenvalues; real partl_imag– (m) eigenvalues; imaginary partv_real– (m,m) right eigenvectors (as columns); real partv_imag– (m,m) right eigenvectors (as columns); imaginary part
Input
a– (m,m) general matrix [will be modified]
Note
- The matrix
awill be modified
Similarity transformation
The eigen-decomposition leads to a similarity transformation like so:
a = v⋅λ⋅v⁻¹where v is a matrix whose columns are the m linearly independent eigenvectors of a,
and λ is a matrix whose diagonal are the eigenvalues of a. Thus, the following is valid:
a⋅v = v⋅λLet us define the error err as follows:
err := a⋅v - v⋅λExample
// import
use russell_lab::*;
use russell_chk::*;
// set matrix
let data = [
[2.0, 0.0, 0.0],
[0.0, 3.0, 4.0],
[0.0, 4.0, 9.0],
];
let mut a = Matrix::from(&data);
// allocate output arrays
let m = a.nrow();
let mut l_real = vec![0.0; m];
let mut l_imag = vec![0.0; m];
let mut v_real = Matrix::new(m, m);
let mut v_imag = Matrix::new(m, m);
// perform the eigen-decomposition
eigen_decomp(
&mut l_real,
&mut l_imag,
&mut v_real,
&mut v_imag,
&mut a,
)?;
// check results
let l_real_correct = "[11.0, 1.0, 2.0]";
let l_imag_correct = "[0.0, 0.0, 0.0]";
let v_real_correct = "┌ ┐\n\
│ 0.000 0.000 1.000 │\n\
│ 0.447 0.894 0.000 │\n\
│ 0.894 -0.447 0.000 │\n\
└ ┘";
let v_imag_correct = "┌ ┐\n\
│ 0 0 0 │\n\
│ 0 0 0 │\n\
│ 0 0 0 │\n\
└ ┘";
assert_eq!(format!("{:?}", l_real), l_real_correct);
assert_eq!(format!("{:?}", l_imag), l_imag_correct);
assert_eq!(format!("{:.3}", v_real), v_real_correct);
assert_eq!(format!("{}", v_imag), v_imag_correct);
// check eigen-decomposition (similarity transformation) of a
// symmetric matrix with real-only eigenvalues and eigenvectors
let a_copy = Matrix::from(&data);
let lam = Matrix::diagonal(&l_real);
let mut a_v = Matrix::new(m, m);
let mut v_l = Matrix::new(m, m);
let mut err = Matrix::filled(m, m, f64::MAX);
mat_mat_mul(&mut a_v, 1.0, &a_copy, &v_real)?;
mat_mat_mul(&mut v_l, 1.0, &v_real, &lam)?;
add_matrices(&mut err, 1.0, &a_v, -1.0, &v_l)?;
assert_approx_eq!(err.norm(EnumMatrixNorm::Max), 0.0, 1e-15);