rumtk_core/threading.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
/*
* rumtk attempts to implement HL7 and medical protocols for interoperability in medicine.
* This toolkit aims to be reliable, simple, performant, and standards compliant.
* Copyright (C) 2025 Luis M. Santos, M.D.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
pub mod thread_primitives {
use std::future::{Future, IntoFuture};
use std::sync::{mpsc, Arc, Mutex};
use std::sync::mpsc::{Receiver, Sender};
use std::thread;
use compact_str::format_compact;
use tokio::runtime::Runtime;
use tokio::sync::futures;
use tokio::task::JoinHandle;
use crate::core::{RUMResult, RUMVec};
use crate::threading::threading_functions::get_default_system_thread_count;
pub type TaskItems<T> = RUMVec<T>;
/// This type aliases a vector of T elements that will be used for passing arguments to the task processor.
pub type TaskArgs<T> = TaskItems<T>;
/// Type to use to define how task results are expected to be returned.
pub type TaskResult<R> = RUMResult<TaskItems<R>>;
pub type TaskResults<R> = TaskItems<TaskResult<R>>;
/// Function signature defining the interface of task processing logic.
pub type MicroTaskQueue<T, R> = Arc<Mutex<RUMVec<Task<T, R>>>>;
pub type SafeTask<T, R> = Arc<Mutex<Task<T, R>>>;
pub type SafeTasks<T, R> = RUMVec<SafeTask<T, R>>;
pub type SafeTaskArgs<T> = Arc<Mutex<TaskItems<T>>>;
pub type ThreadReceiver<T, R> = Arc<Mutex<Receiver<SafeTask<T, R>>>>;
pub type ThreadSender<T, R> = Sender<SafeTask<T, R>>;
pub type AsyncTaskHandle<R> = JoinHandle<TaskResult<R>>;
pub type AsyncTaskHandles<R> = Vec<AsyncTaskHandle<R>>;
pub type TaskProcessor<T, R> = fn(args: &SafeTaskArgs<T>) -> TaskResult<R>;
///
/// A [`Task<T, R>`] is composed of a processing function closure, a list of args of
/// `T` type and a list of results of `R` type.
///
#[derive(Debug, Clone)]
pub struct Task<T, R>
{
task_processor: TaskProcessor<T, R>,
args: SafeTaskArgs<T>,
}
impl<T, R> Task<T, R>
where
T: Send + Clone + 'static,
R: Send + Clone + 'static,
Box<T>: Send + Clone + 'static,
{
///
/// Create an instance of [`Task<T, R>`].
///
/// A [`Task<T, R>`] is composed of a processing function closure, a list of args of
/// `T` type and a list of results of `R` type.
///
pub fn new(task_processor: TaskProcessor<T, R>, args: SafeTaskArgs<T>) -> Task<T, R> {
Task{task_processor, args}
}
///
/// Run the processor with the args and store the results in task
///
pub fn execute(&mut self) -> TaskResult<R> {
let processor = &self.task_processor;
processor(&self.args)
}
}
///
/// Thread Pool type that ensures we spawn the requested number of threads and call our
/// Task type containing the payload and processing function. A reference is passed to the
/// worker thread of an instance of [`MicroTaskQueue`].
///
pub struct ThreadPool {
runtime: Runtime
}
impl ThreadPool
{
///
/// Initializes an instance of [`RUMResult<ThreadPool>`] using the default number of threads available in the system.
/// This is biased towards the bigger value between what Rust std reports and the actual cpu count
/// reported by num_cpus crate.
///
pub fn default() -> RUMResult<ThreadPool> {
ThreadPool::new(get_default_system_thread_count())
}
///
/// Creates an instance of [`RUMResult<ThreadPool>`] with a pool of `size` threads pre-running
/// and waiting for work. When this instance gets dropped, we signal threads to exit.
///
pub fn new(threads: usize) -> RUMResult<ThreadPool> {
let mut builder = tokio::runtime::Builder::new_multi_thread();
builder.worker_threads(threads);
builder.enable_all();
let handle = match builder.build() {
Ok(handle) => handle,
Err(e) => return Err(format_compact!("Unable to initialize threading tokio runtime because {}!", &e)),
};
Ok(ThreadPool{runtime: handle})
}
///
/// Execute a [`MicroTaskQueue<T, R>`] filled with instances of [`Task<T, R>`].
/// We actually send a clone of the reference of the microtask queue.
/// This allows the main thread to poll for results and own the original tasks.
///
pub fn execute<T: Send + Clone + 'static, R: Clone + Send + 'static>(&self, task: SafeTask<T, R>) -> AsyncTaskHandle<R> {
self.runtime.spawn(async move {
let mut task_handle = task.lock().unwrap();
task_handle.execute()
})
}
pub fn resolve_task<R: Send + Clone + 'static>(&self, task: AsyncTaskHandle<R>) -> TaskResult<R> {
self.runtime.block_on(task).unwrap()
}
}
}
pub mod threading_functions {
use std::thread::available_parallelism;
use num_cpus;
pub fn get_default_system_thread_count() -> usize {
let cpus: usize = num_cpus::get();
let parallelism = match available_parallelism() {
Ok(n) => n.get(),
Err(_) => 0
};
if parallelism >= cpus {
parallelism
} else {
cpus
}
}
}
pub mod threading_macros {
use std::sync::MutexGuard;
use crate::queue::queue::TaskItems;
use crate::threading::thread_primitives::TaskProcessor;
extern crate proc_macro;
use proc_macro::TokenStream;
#[macro_export]
macro_rules! run_quick_async_as_sync {
( $func:expr ) => {{
let tokio_runtime = tokio::runtime::Handle::current();
let arg_list = vec![];
let args = create_task_args!(arg_list);
tokio_runtime.block_on(async move {
$func(&args).await
})
}};
( $func:expr, $($arg_items:expr),+ ) => {{
let tokio_runtime = tokio::runtime::Handle::current();
let arg_list = vec![$($arg_items),+];
let args = create_task_args!(arg_list);
tokio_runtime.block_on(async move {
$func(&args).await
})
}};
}
#[macro_export]
macro_rules! run_quick_task {
( $task:expr ) => {{
use $crate::threading::thread_primitives::{ThreadPool};
let mut init = ThreadPool::new(1)?;
init.resolve_task(init.execute($task))
}};
}
#[macro_export]
macro_rules! create_task {
( $processor:expr, $args:expr ) => {{
use $crate::threading::thread_primitives::{Task, SafeTask};
SafeTask::new(Mutex::new(Task::new($processor, $args)))
}};
}
#[macro_export]
macro_rules! create_task_args {
( $args:expr ) => {{
use $crate::threading::thread_primitives::{TaskArgs, SafeTaskArgs};
SafeTaskArgs::new(Mutex::new($args))
}};
}
#[macro_export]
macro_rules! create_thread_pool {
( $threads:expr ) => {{
use $crate::threading::thread_primitives::{ThreadPool};
ThreadPool::new($threads)
}};
( ) => {{
use $crate::threading::thread_primitives::{ThreadPool};
ThreadPool::default()
}};
}
#[macro_export]
macro_rules! execute_task {
( $pool:expr, $task:expr ) => {{
$pool.execute($task)
}};
}
}