rumtk_core/threading.rs
1/*
2 * rumtk attempts to implement HL7 and medical protocols for interoperability in medicine.
3 * This toolkit aims to be reliable, simple, performant, and standards compliant.
4 * Copyright (C) 2025 Luis M. Santos, M.D.
5 * Copyright (C) 2025 MedicalMasses L.L.C.
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22///
23/// This module provides all the primitives needed to build a multithreaded application.
24///
25pub mod thread_primitives {
26 use crate::cache::{new_cache, LazyRUMCache};
27 use std::sync::Arc;
28 use tokio::runtime::Runtime as TokioRuntime;
29 /**************************** Globals **************************************/
30 pub static mut RT_CACHE: TokioRtCache = new_cache();
31 /**************************** Helpers ***************************************/
32 pub fn init_cache(threads: &usize) -> SafeTokioRuntime {
33 let mut builder = tokio::runtime::Builder::new_multi_thread();
34 builder.worker_threads(*threads);
35 builder.enable_all();
36 match builder.build() {
37 Ok(handle) => Arc::new(handle),
38 Err(e) => panic!(
39 "Unable to initialize threading tokio runtime because {}!",
40 &e
41 ),
42 }
43 }
44
45 /**************************** Types ***************************************/
46 pub type SafeTokioRuntime = Arc<TokioRuntime>;
47 pub type TokioRtCache = LazyRUMCache<usize, SafeTokioRuntime>;
48}
49
50pub mod threading_manager {
51 use crate::cache::LazyRUMCacheValue;
52 use crate::core::{RUMResult, RUMVec};
53 use crate::strings::rumtk_format;
54 use crate::threading::thread_primitives::SafeTokioRuntime;
55 use crate::threading::threading_functions::async_sleep;
56 use crate::types::{RUMHashMap, RUMID};
57 use crate::{rumtk_init_threads, rumtk_resolve_task, rumtk_spawn_task, threading};
58 use std::future::Future;
59 use std::sync::Arc;
60 use tokio::sync::RwLock;
61 use tokio::task::JoinHandle;
62
63 const DEFAULT_SLEEP_DURATION: f32 = 0.001f32;
64 const DEFAULT_TASK_CAPACITY: usize = 1024;
65
66 pub type TaskItems<T> = RUMVec<T>;
67 /// This type aliases a vector of T elements that will be used for passing arguments to the task processor.
68 pub type TaskArgs<T> = TaskItems<T>;
69 /// Function signature defining the interface of task processing logic.
70 pub type SafeTaskArgs<T> = Arc<RwLock<TaskItems<T>>>;
71 pub type AsyncTaskHandle<R> = JoinHandle<TaskResult<R>>;
72 pub type AsyncTaskHandles<R> = Vec<AsyncTaskHandle<R>>;
73 //pub type TaskProcessor<T, R, Fut: Future<Output = TaskResult<R>>> = impl FnOnce(&SafeTaskArgs<T>) -> Fut;
74 pub type TaskID = RUMID;
75
76 #[derive(Debug, Clone, Default)]
77 pub struct Task<R> {
78 pub id: TaskID,
79 pub finished: bool,
80 pub result: Option<R>,
81 }
82
83 pub type SafeTask<R> = Arc<Task<R>>;
84 type SafeInternalTask<R> = Arc<RwLock<Task<R>>>;
85 pub type TaskTable<R> = RUMHashMap<TaskID, SafeInternalTask<R>>;
86 pub type TaskBatch = RUMVec<TaskID>;
87 /// Type to use to define how task results are expected to be returned.
88 pub type TaskResult<R> = RUMResult<SafeTask<R>>;
89 pub type TaskResults<R> = TaskItems<TaskResult<R>>;
90 pub type TaskRuntime = LazyRUMCacheValue<SafeTokioRuntime>;
91
92 ///
93 /// Manages asynchronous tasks submitted as micro jobs from synchronous code. This type essentially
94 /// gives the multithreading, asynchronous superpowers to synchronous logic.
95 ///
96 /// ## Example Usage
97 ///
98 /// ```
99 /// use std::sync::{Arc};
100 /// use tokio::sync::RwLock as AsyncRwLock;
101 /// use rumtk_core::core::RUMResult;
102 /// use rumtk_core::strings::RUMString;
103 /// use rumtk_core::threading::threading_manager::{SafeTaskArgs, TaskItems, TaskManager};
104 /// use rumtk_core::{rumtk_create_task, };
105 ///
106 /// let expected = vec![
107 /// RUMString::from("Hello"),
108 /// RUMString::from("World!"),
109 /// RUMString::from("Overcast"),
110 /// RUMString::from("and"),
111 /// RUMString::from("Sad"),
112 /// ];
113 ///
114 /// type TestResult = RUMResult<Vec<RUMString>>;
115 /// let mut queue: TaskManager<TestResult> = TaskManager::new(&5).unwrap();
116 ///
117 /// let locked_args = AsyncRwLock::new(expected.clone());
118 /// let task_args = SafeTaskArgs::<RUMString>::new(locked_args);
119 /// let processor = rumtk_create_task!(
120 /// async |args: &SafeTaskArgs<RUMString>| -> TestResult {
121 /// let owned_args = Arc::clone(args);
122 /// let locked_args = owned_args.read().await;
123 /// let mut results = TaskItems::<RUMString>::with_capacity(locked_args.len());
124 ///
125 /// for arg in locked_args.iter() {
126 /// results.push(RUMString::new(arg));
127 /// }
128 ///
129 /// Ok(results)
130 /// },
131 /// task_args
132 /// );
133 ///
134 /// queue.add_task::<_>(processor);
135 /// let results = queue.wait();
136 ///
137 /// let mut result_data = Vec::<RUMString>::with_capacity(5);
138 /// for r in results {
139 /// for v in r.unwrap().result.clone().unwrap().iter() {
140 /// for value in v.iter() {
141 /// result_data.push(value.clone());
142 /// }
143 /// }
144 /// }
145 ///
146 /// assert_eq!(result_data, expected, "Results do not match expected!");
147 ///
148 /// ```
149 ///
150 #[derive(Debug, Clone, Default)]
151 pub struct TaskManager<R> {
152 tasks: TaskTable<R>,
153 workers: usize,
154 }
155
156 impl<R> TaskManager<R>
157 where
158 R: Sync + Send + Clone + 'static,
159 {
160 ///
161 /// This method creates a [`TaskQueue`] instance using sensible defaults.
162 ///
163 /// The `threads` field is computed from the number of cores present in system.
164 ///
165 pub fn default() -> RUMResult<TaskManager<R>> {
166 Self::new(&threading::threading_functions::get_default_system_thread_count())
167 }
168
169 ///
170 /// Creates an instance of [`ThreadedTaskQueue<T, R>`] in the form of [`SafeThreadedTaskQueue<T, R>`].
171 /// Expects you to provide the count of threads to spawn and the microtask queue size
172 /// allocated by each thread.
173 ///
174 /// This method calls [`Self::with_capacity()`] for the actual object creation.
175 /// The main queue capacity is pre-allocated to [`DEFAULT_QUEUE_CAPACITY`].
176 ///
177 pub fn new(worker_num: &usize) -> RUMResult<TaskManager<R>> {
178 let tasks = TaskTable::<R>::with_capacity(DEFAULT_TASK_CAPACITY);
179 Ok(TaskManager::<R> {
180 tasks,
181 workers: worker_num.to_owned(),
182 })
183 }
184
185 ///
186 /// Add a task to the processing queue. The idea is that you can queue a processor function
187 /// and list of args that will be picked up by one of the threads for processing.
188 ///
189 pub fn add_task<F>(&mut self, task: F) -> TaskID
190 where
191 F: Future<Output = R> + Send + Sync + 'static,
192 F::Output: Send + Sized + 'static,
193 {
194 let id = TaskID::new_v4();
195 let mut safe_task = Arc::new(RwLock::new(Task::<R> {
196 id: id.clone(),
197 finished: false,
198 result: None,
199 }));
200 self.tasks.insert(id.clone(), safe_task.clone());
201
202 let task_wrapper = async move || {
203 // Run the task
204 let result = task.await;
205
206 // Cleanup task
207 safe_task.write().await.result = Some(result);
208 safe_task.write().await.finished = true;
209 };
210
211 let rt = rumtk_init_threads!(&self.workers);
212 rumtk_spawn_task!(rt, task_wrapper());
213
214 id
215 }
216
217 ///
218 /// This method waits until all queued tasks have been processed from the main queue.
219 ///
220 /// We poll the status of the main queue every [DEFAULT_SLEEP_DURATION](DEFAULT_SLEEP_DURATION) ms.
221 ///
222 /// Upon completion,
223 ///
224 /// 1. We collect the results generated (if any).
225 /// 2. We reset the main task and result internal queue states.
226 /// 3. Return the list of results ([TaskResults<R>](TaskResults)).
227 ///
228 /// This operation consumes all the tasks.
229 ///
230 /// ### Note:
231 /// ```text
232 /// Results returned here are not guaranteed to be in the same order as the order in which
233 /// the tasks were queued for work. You will need to pass a type as T that automatically
234 /// tracks its own id or has a way for you to resort results.
235 /// ```
236 pub fn wait(&mut self) -> TaskResults<R> {
237 let rt = rumtk_init_threads!(&self.workers);
238 let task_batch = self.tasks.keys().cloned().collect::<Vec<_>>();
239 let results = rumtk_resolve_task!(rt, self.wait_for_batch(&task_batch));
240
241 self.reset();
242 results
243 }
244
245 ///
246 /// This method waits until a queued task with [TaskID](TaskID) has been processed from the main queue.
247 ///
248 /// We poll the status of the task every [DEFAULT_SLEEP_DURATION](DEFAULT_SLEEP_DURATION) ms.
249 ///
250 /// Upon completion,
251 ///
252 /// 2. Return the result ([TaskResults<R>](TaskResults)).
253 ///
254 /// This operation consumes the task.
255 ///
256 /// ### Note:
257 /// ```text
258 /// Results returned here are not guaranteed to be in the same order as the order in which
259 /// the tasks were queued for work. You will need to pass a type as T that automatically
260 /// tracks its own id or has a way for you to resort results.
261 /// ```
262 pub async fn wait_for(&mut self, task_id: &TaskID) -> TaskResult<R> {
263 let task = match self.tasks.remove(task_id) {
264 Some(task) => task.clone(),
265 None => return Err(rumtk_format!("No task with id {}", task_id)),
266 };
267
268 while !task.read().await.finished {
269 async_sleep(DEFAULT_SLEEP_DURATION).await;
270 }
271
272 let x = Ok(Arc::new(task.write().await.clone()));
273 x
274 }
275
276 ///
277 /// This method waits until a set of queued tasks with [TaskID](TaskID) has been processed from the main queue.
278 ///
279 /// We poll the status of the task every [DEFAULT_SLEEP_DURATION](DEFAULT_SLEEP_DURATION) ms.
280 ///
281 /// Upon completion,
282 ///
283 /// 1. We collect the results generated (if any).
284 /// 2. Return the list of results ([TaskResults<R>](TaskResults)).
285 ///
286 /// ### Note:
287 /// ```text
288 /// Results returned here are not guaranteed to be in the same order as the order in which
289 /// the tasks were queued for work. You will need to pass a type as T that automatically
290 /// tracks its own id or has a way for you to resort results.
291 /// ```
292 pub async fn wait_for_batch(&mut self, tasks: &TaskBatch) -> TaskResults<R> {
293 let mut results = TaskResults::<R>::default();
294 for task in tasks {
295 results.push(self.wait_for(task).await);
296 }
297 results
298 }
299
300 ///
301 /// Check if all work has been completed from the task queue.
302 ///
303 /// ## Examples
304 ///
305 /// ### Sync Usage
306 ///
307 ///```
308 /// use rumtk_core::threading::threading_manager::TaskManager;
309 ///
310 /// let manager = TaskManager::<usize>::new(&4).unwrap();
311 ///
312 /// let all_done = manager.is_all_completed();
313 ///
314 /// assert_eq!(all_done, true, "Empty TaskManager reports tasks are not completed!");
315 ///
316 /// ```
317 ///
318 pub fn is_all_completed(&self) -> bool {
319 let rt = rumtk_init_threads!(&self.workers);
320 rumtk_resolve_task!(rt, TaskManager::<R>::is_all_completed_async(self))
321 }
322
323 pub async fn is_all_completed_async(&self) -> bool {
324 for (_, task) in self.tasks.iter() {
325 if !task.read().await.finished {
326 return false;
327 }
328 }
329
330 true
331 }
332
333 ///
334 /// Reset task queue and results queue states.
335 ///
336 pub fn reset(&mut self) {
337 self.tasks.clear();
338 }
339
340 ///
341 /// Alias for [wait](TaskManager::wait).
342 ///
343 fn gather(&mut self) -> TaskResults<R> {
344 self.wait()
345 }
346 }
347}
348
349///
350/// This module contains a few helper.
351///
352/// For example, you can find a function for determining number of threads available in system.
353/// The sleep family of functions are also here.
354///
355pub mod threading_functions {
356 use num_cpus;
357 use std::thread::{available_parallelism, sleep as std_sleep};
358 use std::time::Duration;
359 use tokio::time::sleep as tokio_sleep;
360
361 pub const NANOS_PER_SEC: u64 = 1000000000;
362 pub const MILLIS_PER_SEC: u64 = 1000;
363 pub const MICROS_PER_SEC: u64 = 1000000;
364
365 pub fn get_default_system_thread_count() -> usize {
366 let cpus: usize = num_cpus::get();
367 let parallelism = match available_parallelism() {
368 Ok(n) => n.get(),
369 Err(_) => 0,
370 };
371
372 if parallelism >= cpus {
373 parallelism
374 } else {
375 cpus
376 }
377 }
378
379 pub fn sleep(s: f32) {
380 let ns = s * NANOS_PER_SEC as f32;
381 let rounded_ns = ns.round() as u64;
382 let duration = Duration::from_nanos(rounded_ns);
383 std_sleep(duration);
384 }
385
386 pub async fn async_sleep(s: f32) {
387 let ns = s * NANOS_PER_SEC as f32;
388 let rounded_ns = ns.round() as u64;
389 let duration = Duration::from_nanos(rounded_ns);
390 tokio_sleep(duration).await;
391 }
392}
393
394///
395/// Main API for interacting with the threading back end. Remember, we use tokio as our executor.
396/// This means that by default, all jobs sent to the thread pool have to be async in nature.
397/// These macros make handling of these jobs at the sync/async boundary more convenient.
398///
399pub mod threading_macros {
400 use crate::threading::thread_primitives;
401 use crate::threading::threading_manager::SafeTaskArgs;
402
403 ///
404 /// First, let's make sure we have *tokio* initialized at least once. The runtime created here
405 /// will be saved to the global context so the next call to this macro will simply grab a
406 /// reference to the previously initialized runtime.
407 ///
408 /// Passing nothing will default to initializing a runtime using the default number of threads
409 /// for this system. This is typically equivalent to number of cores/threads for your CPU.
410 ///
411 /// Passing `threads` number will yield a runtime that allocates that many threads.
412 ///
413 ///
414 /// ## Examples
415 ///
416 /// ```
417 /// use rumtk_core::{rumtk_init_threads, rumtk_resolve_task, rumtk_create_task_args, rumtk_create_task, rumtk_spawn_task};
418 /// use rumtk_core::core::RUMResult;
419 /// use rumtk_core::threading::threading_manager::SafeTaskArgs;
420 ///
421 /// async fn test(args: &SafeTaskArgs<i32>) -> RUMResult<Vec<i32>> {
422 /// let mut result = Vec::<i32>::new();
423 /// for arg in args.read().await.iter() {
424 /// result.push(*arg);
425 /// }
426 /// Ok(result)
427 /// }
428 ///
429 /// let rt = rumtk_init_threads!(); // Creates runtime instance
430 /// let args = rumtk_create_task_args!(1); // Creates a vector of i32s
431 /// let task = rumtk_create_task!(test, args); // Creates a standard task which consists of a function or closure accepting a Vec<T>
432 /// let result = rumtk_resolve_task!(&rt, rumtk_spawn_task!(&rt, task)); // Spawn's task and waits for it to conclude.
433 /// ```
434 ///
435 /// ```
436 /// use rumtk_core::{rumtk_init_threads, rumtk_resolve_task, rumtk_create_task_args, rumtk_create_task, rumtk_spawn_task};
437 /// use rumtk_core::core::RUMResult;
438 /// use rumtk_core::threading::threading_manager::SafeTaskArgs;
439 ///
440 /// async fn test(args: &SafeTaskArgs<i32>) -> RUMResult<Vec<i32>> {
441 /// let mut result = Vec::<i32>::new();
442 /// for arg in args.read().await.iter() {
443 /// result.push(*arg);
444 /// }
445 /// Ok(result)
446 /// }
447 ///
448 /// let thread_count: usize = 10;
449 /// let rt = rumtk_init_threads!(&thread_count);
450 /// let args = rumtk_create_task_args!(1);
451 /// let task = rumtk_create_task!(test, args);
452 /// let result = rumtk_resolve_task!(&rt, rumtk_spawn_task!(&rt, task));
453 /// ```
454 #[macro_export]
455 macro_rules! rumtk_init_threads {
456 ( ) => {{
457 use $crate::rumtk_cache_fetch;
458 use $crate::threading::thread_primitives::{init_cache, RT_CACHE};
459 use $crate::threading::threading_functions::get_default_system_thread_count;
460 let rt = rumtk_cache_fetch!(
461 &mut RT_CACHE,
462 &get_default_system_thread_count(),
463 init_cache
464 );
465 rt
466 }};
467 ( $threads:expr ) => {{
468 use $crate::rumtk_cache_fetch;
469 use $crate::threading::thread_primitives::{init_cache, RT_CACHE};
470 let rt = rumtk_cache_fetch!(&raw mut RT_CACHE, $threads, init_cache);
471 rt
472 }};
473 }
474
475 ///
476 /// Puts task onto the runtime queue.
477 ///
478 /// The parameters to this macro are a reference to the runtime (`rt`) and a future (`func`).
479 ///
480 /// The return is a [thread_primitives::JoinHandle<T>] instance. If the task was a standard
481 /// framework task, you will get [thread_primitives::AsyncTaskHandle] instead.
482 ///
483 #[macro_export]
484 macro_rules! rumtk_spawn_task {
485 ( $func:expr ) => {{
486 let rt = rumtk_init_threads!();
487 rt.spawn($func)
488 }};
489 ( $rt:expr, $func:expr ) => {{
490 $rt.spawn($func)
491 }};
492 }
493
494 ///
495 /// Using the initialized runtime, wait for the future to resolve in a thread blocking manner!
496 ///
497 /// If you pass a reference to the runtime (`rt`) and an async closure (`func`), we await the
498 /// async closure without passing any arguments.
499 ///
500 /// You can pass a third argument to this macro in the form of any number of arguments (`arg_item`).
501 /// In such a case, we pass those arguments to the call on the async closure and await on results.
502 ///
503 #[macro_export]
504 macro_rules! rumtk_wait_on_task {
505 ( $rt:expr, $func:expr ) => {{
506 $rt.block_on(async move {
507 $func().await
508 })
509 }};
510 ( $rt:expr, $func:expr, $($arg_items:expr),+ ) => {{
511 $rt.block_on(async move {
512 $func($($arg_items),+).await
513 })
514 }};
515 }
516
517 ///
518 /// This macro awaits a future.
519 ///
520 /// The arguments are a reference to the runtime (`rt) and a future.
521 ///
522 /// If there is a result, you will get the result of the future.
523 ///
524 /// ## Examples
525 ///
526 /// ```
527 /// use rumtk_core::{rumtk_init_threads, rumtk_resolve_task, rumtk_create_task_args, rumtk_create_task, rumtk_spawn_task};
528 /// use rumtk_core::core::RUMResult;
529 /// use rumtk_core::threading::threading_manager::SafeTaskArgs;
530 ///
531 /// async fn test(args: &SafeTaskArgs<i32>) -> RUMResult<Vec<i32>> {
532 /// let mut result = Vec::<i32>::new();
533 /// for arg in args.read().await.iter() {
534 /// result.push(*arg);
535 /// }
536 /// Ok(result)
537 /// }
538 ///
539 /// let rt = rumtk_init_threads!();
540 /// let args = rumtk_create_task_args!(1);
541 /// let task = rumtk_create_task!(test, args);
542 /// let result = rumtk_resolve_task!(&rt, rumtk_spawn_task!(&rt, task));
543 /// ```
544 ///
545 #[macro_export]
546 macro_rules! rumtk_resolve_task {
547 ( $rt:expr, $future:expr ) => {{
548 use $crate::strings::rumtk_format;
549 // Fun tidbit, the expression rumtk_resolve_task!(&rt, rumtk_spawn_task!(&rt, task)), where
550 // rt is the tokio runtime yields async move { { &rt.spawn(task) } }. However, the whole thing
551 // is technically moved into the async closure and captured so things like mutex guards
552 // technically go out of the outer scope. As a result that expression fails to compile even
553 // though the intent is for rumtk_spawn_task to resolve first and its result get moved
554 // into the async closure. To ensure that happens regardless of given expression, we do
555 // a variable assignment below to force the "future" macro expressions to resolve before
556 // moving into the closure. DO NOT REMOVE OR "SIMPLIFY" THE let future = $future LINE!!!
557 let future = $future;
558 $rt.block_on(async move { future.await })
559 }};
560 }
561
562 ///
563 /// This macro creates an async body that calls the async closure and awaits it.
564 ///
565 /// ## Example
566 ///
567 /// ```
568 /// use std::sync::{Arc, RwLock};
569 /// use tokio::sync::RwLock as AsyncRwLock;
570 /// use rumtk_core::strings::RUMString;
571 /// use rumtk_core::threading::threading_manager::{SafeTaskArgs, TaskItems};
572 ///
573 /// pub type SafeTaskArgs2<T> = Arc<RwLock<TaskItems<T>>>;
574 /// let expected = vec![
575 /// RUMString::from("Hello"),
576 /// RUMString::from("World!"),
577 /// RUMString::from("Overcast"),
578 /// RUMString::from("and"),
579 /// RUMString::from("Sad"),
580 /// ];
581 /// let locked_args = AsyncRwLock::new(expected.clone());
582 /// let task_args = SafeTaskArgs::<RUMString>::new(locked_args);
583 ///
584 ///
585 /// ```
586 ///
587 #[macro_export]
588 macro_rules! rumtk_create_task {
589 ( $func:expr ) => {{
590 async move {
591 let f = $func;
592 f().await
593 }
594 }};
595 ( $func:expr, $args:expr ) => {{
596 let f = $func;
597 async move { f(&$args).await }
598 }};
599 }
600
601 ///
602 /// Creates an instance of [SafeTaskArgs] with the arguments passed.
603 ///
604 /// ## Note
605 ///
606 /// All arguments must be of the same type
607 ///
608 #[macro_export]
609 macro_rules! rumtk_create_task_args {
610 ( ) => {{
611 use $crate::threading::threading_manager::{TaskArgs, SafeTaskArgs, TaskItems};
612 use tokio::sync::RwLock;
613 SafeTaskArgs::new(RwLock::new(vec![]))
614 }};
615 ( $($args:expr),+ ) => {{
616 use $crate::threading::threading_manager::{SafeTaskArgs};
617 use tokio::sync::RwLock;
618 SafeTaskArgs::new(RwLock::new(vec![$($args),+]))
619 }};
620 }
621
622 ///
623 /// Convenience macro for packaging the task components and launching the task in one line.
624 ///
625 /// One of the advantages is that you can generate a new `tokio` runtime by specifying the
626 /// number of threads at the end. This is optional. Meaning, we will default to the system's
627 /// number of threads if that value is not specified.
628 ///
629 /// Between the `func` parameter and the optional `threads` parameter, you can specify a
630 /// variable number of arguments to pass to the task. each argument must be of the same type.
631 /// If you wish to pass different arguments with different types, please define an abstract type
632 /// whose underlying structure is a tuple of items and pass that instead.
633 ///
634 /// ## Examples
635 ///
636 /// ### With Default Thread Count
637 /// ```
638 /// use rumtk_core::{rumtk_exec_task};
639 /// use rumtk_core::core::RUMResult;
640 /// use rumtk_core::threading::threading_manager::SafeTaskArgs;
641 ///
642 /// async fn test(args: &SafeTaskArgs<i32>) -> RUMResult<Vec<i32>> {
643 /// let mut result = Vec::<i32>::new();
644 /// for arg in args.read().await.iter() {
645 /// result.push(*arg);
646 /// }
647 /// Ok(result)
648 /// }
649 ///
650 /// let result = rumtk_exec_task!(test, vec![5]);
651 /// assert_eq!(&result.clone().unwrap(), &vec![5], "Results mismatch");
652 /// assert_ne!(&result.clone().unwrap(), &vec![5, 10], "Results do not mismatch as expected!");
653 /// ```
654 ///
655 /// ### With Custom Thread Count
656 /// ```
657 /// use rumtk_core::{rumtk_exec_task};
658 /// use rumtk_core::core::RUMResult;
659 /// use rumtk_core::threading::threading_manager::SafeTaskArgs;
660 ///
661 /// async fn test(args: &SafeTaskArgs<i32>) -> RUMResult<Vec<i32>> {
662 /// let mut result = Vec::<i32>::new();
663 /// for arg in args.read().await.iter() {
664 /// result.push(*arg);
665 /// }
666 /// Ok(result)
667 /// }
668 ///
669 /// let result = rumtk_exec_task!(test, vec![5], 5);
670 /// assert_eq!(&result.clone().unwrap(), &vec![5], "Results mismatch");
671 /// assert_ne!(&result.clone().unwrap(), &vec![5, 10], "Results do not mismatch as expected!");
672 /// ```
673 ///
674 /// ### With Async Function Body
675 /// ```
676 /// use rumtk_core::{rumtk_exec_task};
677 /// use rumtk_core::core::RUMResult;
678 /// use rumtk_core::threading::threading_manager::SafeTaskArgs;
679 ///
680 /// let result = rumtk_exec_task!(
681 /// async move |args: &SafeTaskArgs<i32>| -> RUMResult<Vec<i32>> {
682 /// let mut result = Vec::<i32>::new();
683 /// for arg in args.read().await.iter() {
684 /// result.push(*arg);
685 /// }
686 /// Ok(result)
687 /// },
688 /// vec![5]);
689 /// assert_eq!(&result.clone().unwrap(), &vec![5], "Results mismatch");
690 /// assert_ne!(&result.clone().unwrap(), &vec![5, 10], "Results do not mismatch as expected!");
691 /// ```
692 ///
693 /// ### With Async Function Body and No Args
694 /// ```
695 /// use rumtk_core::{rumtk_exec_task};
696 /// use rumtk_core::core::RUMResult;
697 /// use rumtk_core::threading::threading_manager::SafeTaskArgs;
698 ///
699 /// let result = rumtk_exec_task!(
700 /// async || -> RUMResult<Vec<i32>> {
701 /// let mut result = Vec::<i32>::new();
702 /// Ok(result)
703 /// });
704 /// let empty = Vec::<i32>::new();
705 /// assert_eq!(&result.clone().unwrap(), &empty, "Results mismatch");
706 /// assert_ne!(&result.clone().unwrap(), &vec![5, 10], "Results do not mismatch as expected!");
707 /// ```
708 ///
709 /// ## Equivalent To
710 ///
711 /// ```
712 /// use rumtk_core::{rumtk_init_threads, rumtk_resolve_task, rumtk_create_task_args, rumtk_create_task, rumtk_spawn_task};
713 /// use rumtk_core::core::RUMResult;
714 /// use rumtk_core::threading::threading_manager::SafeTaskArgs;
715 ///
716 /// async fn test(args: &SafeTaskArgs<i32>) -> RUMResult<Vec<i32>> {
717 /// let mut result = Vec::<i32>::new();
718 /// for arg in args.read().await.iter() {
719 /// result.push(*arg);
720 /// }
721 /// Ok(result)
722 /// }
723 ///
724 /// let rt = rumtk_init_threads!();
725 /// let args = rumtk_create_task_args!(1);
726 /// let task = rumtk_create_task!(test, args);
727 /// let result = rumtk_resolve_task!(&rt, rumtk_spawn_task!(&rt, task));
728 /// ```
729 ///
730 #[macro_export]
731 macro_rules! rumtk_exec_task {
732 ($func:expr ) => {{
733 use tokio::sync::RwLock;
734 use $crate::{
735 rumtk_create_task, rumtk_create_task_args, rumtk_init_threads, rumtk_resolve_task,
736 };
737 let rt = rumtk_init_threads!();
738 let task = rumtk_create_task!($func);
739 rumtk_resolve_task!(&rt, task)
740 }};
741 ($func:expr, $args:expr ) => {{
742 use tokio::sync::RwLock;
743 use $crate::{
744 rumtk_create_task, rumtk_create_task_args, rumtk_init_threads, rumtk_resolve_task,
745 };
746 let rt = rumtk_init_threads!();
747 let args = SafeTaskArgs::new(RwLock::new($args));
748 let task = rumtk_create_task!($func, args);
749 rumtk_resolve_task!(&rt, task)
750 }};
751 ($func:expr, $args:expr , $threads:expr ) => {{
752 use tokio::sync::RwLock;
753 use $crate::{
754 rumtk_create_task, rumtk_create_task_args, rumtk_init_threads, rumtk_resolve_task,
755 };
756 let rt = rumtk_init_threads!(&$threads);
757 let args = SafeTaskArgs::new(RwLock::new($args));
758 let task = rumtk_create_task!($func, args);
759 rumtk_resolve_task!(&rt, task)
760 }};
761 }
762
763 ///
764 /// Sleep a duration of time in a sync context, so no await can be call on the result.
765 ///
766 /// You can pass any value that can be cast to f32.
767 ///
768 /// The precision is up to nanoseconds and it is depicted by the number of decimal places.
769 ///
770 /// ## Examples
771 ///
772 /// ```
773 /// use rumtk_core::rumtk_sleep;
774 /// rumtk_sleep!(1); // Sleeps for 1 second.
775 /// rumtk_sleep!(0.001); // Sleeps for 1 millisecond
776 /// rumtk_sleep!(0.000001); // Sleeps for 1 microsecond
777 /// rumtk_sleep!(0.000000001); // Sleeps for 1 nanosecond
778 /// ```
779 ///
780 #[macro_export]
781 macro_rules! rumtk_sleep {
782 ( $dur:expr) => {{
783 use $crate::threading::threading_functions::sleep;
784 sleep($dur as f32)
785 }};
786 }
787
788 ///
789 /// Sleep for some duration of time in an async context. Meaning, we can be awaited.
790 ///
791 /// You can pass any value that can be cast to f32.
792 ///
793 /// The precision is up to nanoseconds and it is depicted by the number of decimal places.
794 ///
795 /// ## Examples
796 ///
797 /// ```
798 /// use rumtk_core::{rumtk_async_sleep, rumtk_exec_task};
799 /// use rumtk_core::core::RUMResult;
800 /// rumtk_exec_task!( async || -> RUMResult<()> {
801 /// rumtk_async_sleep!(1).await; // Sleeps for 1 second.
802 /// rumtk_async_sleep!(0.001).await; // Sleeps for 1 millisecond
803 /// rumtk_async_sleep!(0.000001).await; // Sleeps for 1 microsecond
804 /// rumtk_async_sleep!(0.000000001).await; // Sleeps for 1 nanosecond
805 /// Ok(())
806 /// }
807 /// );
808 /// ```
809 ///
810 #[macro_export]
811 macro_rules! rumtk_async_sleep {
812 ( $dur:expr) => {{
813 use $crate::threading::threading_functions::async_sleep;
814 async_sleep($dur as f32)
815 }};
816 }
817
818 ///
819 ///
820 ///
821 #[macro_export]
822 macro_rules! rumtk_new_task_queue {
823 ( $worker_num:expr ) => {{
824 use $crate::threading::threading_manager::TaskManager;
825 TaskManager::new($worker_num);
826 }};
827 }
828}