rumtk_core/
strings.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
/*
 * rumtk attempts to implement HL7 and medical protocols for interoperability in medicine.
 * This toolkit aims to be reliable, simple, performant, and standards compliant.
 * Copyright (C) 2024  Luis M. Santos, M.D.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */
use chardetng::EncodingDetector;
pub use compact_str::{format_compact, CompactString, CompactStringExt, ToCompactString};
use encoding_rs::Encoding;
use unicode_segmentation::UnicodeSegmentation;
/**************************** Constants**************************************/
const ESCAPED_STRING_WINDOW: usize = 6;
const ASCII_ESCAPE_CHAR: char = '\\';
const MIN_ASCII_READABLE: char = ' ';
const MAX_ASCII_READABLE: char = '~';
pub const EMPTY_STRING: &str = "";
pub const DOT_STR: &str = ".";
pub const EMPTY_STRING_OPTION: Option<&str> = Some("");
pub const READABLE_ASCII: &str = " !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~";

/**************************** Types *****************************************/
pub type RUMString = CompactString;

/**************************** Traits ****************************************/

///
/// Implemented indexing trait for String and str which uses the UnicodeSegmentation facilities to
/// enable grapheme iteration by default. There could be some performance penalty, but it will allow
/// for native Unicode support to the best extent possible.
///
/// We also enable decoding from Encoding Standard encodings to UTF-8.
///
pub trait UTFStringExtensions {
    fn count_graphemes(&self) -> usize;

    ///
    /// Return a grapheme unit which could span multiple Unicode codepoints or "characters".
    ///
    /// # Note
    ///
    ///     If the grapheme requested does not exists, this method will return a blank string.
    ///
    ///
    /// Instead of just retrieving a codepoint as character, I decided to take it a step further and
    /// have support for grapheme selection such that characters in written language like sanskrit
    /// can be properly selected and evaluated.
    ///
    /// [!CAUTION]
    /// This can be an extremely slow operation over large strings since each call to this method
    /// will need to rescan the input string every time we need to look up a grapheme. Unfortunately,
    /// this is a side effect of convenience. To improve performance, call .get_graphemes() once and
    /// then call take_grapheme() over that iterator.
    ///
    #[inline(always)]
    fn get_grapheme(&self, index: usize) -> &str;

    #[inline(always)]
    fn get_graphemes(&self) -> Vec<&str>;

    #[inline(always)]
    fn get_grapheme_chunk(&self, offset: usize) -> Vec<&str>;

    #[inline(always)]
    fn take_grapheme<'a>(&self, graphemes: &Vec<&'a str>, index: usize) -> RUMString {
        if index >= graphemes.len() {
            return RUMString::from(EMPTY_STRING);
        }
        RUMString::from(graphemes[index])
    }

    #[inline(always)]
    fn get_grapheme_window(&self, min: usize, max: usize, offset: usize) -> RUMString {
        let mut window: RUMString = RUMString::with_capacity(max - min);
        let start = min + offset;
        let end = max + offset;
        let graphemes = self.get_graphemes();
        for i in start..end {
            window += &self.take_grapheme(&graphemes, i);
        }
        window
    }

    #[inline(always)]
    fn get_grapheme_string(&self, end_pattern: &str, offset: usize) -> RUMString {
        let mut window: RUMString = RUMString::with_capacity(ESCAPED_STRING_WINDOW);
        for grapheme in self.get_grapheme_chunk(offset) {
            if grapheme == end_pattern {
                return RUMString::from(window);
            } else {
                window += grapheme;
            }
        }
        RUMString::from(window)
    }

    #[inline(always)]
    fn find_grapheme(&self, pattern: &str, offset: usize) -> &str {
        for grapheme in self.get_grapheme_chunk(offset) {
            if grapheme == pattern {
                return grapheme;
            }
        }
        EMPTY_STRING
    }

    #[inline(always)]
    fn truncate(&self, max_size: usize) -> RUMString {
        self.get_grapheme_window(0, max_size, 0)
    }
}

pub trait AsStr {
    fn as_str(&self) -> &str;
}

pub trait RUMStringConversions: ToString {
    fn to_rumstring(&self) -> RUMString {
        RUMString::from(self.to_string())
    }
}

pub trait StringUtils: AsStr {
    #[inline(always)]
    fn duplicate(&self, count: usize) -> RUMString {
        let mut duplicated = RUMString::with_capacity(count);
        for i in 0..count {
            duplicated += &self.as_str();
        }
        duplicated
    }
}

impl UTFStringExtensions for RUMString {
    #[inline(always)]
    fn count_graphemes(&self) -> usize {
        self.graphemes(true).count()
    }

    #[inline(always)]
    fn get_grapheme(&self, index: usize) -> &str {
        self.graphemes(true)
            .nth(index)
            .or(EMPTY_STRING_OPTION)
            .unwrap()
    }

    #[inline(always)]
    fn get_graphemes(&self) -> Vec<&str> {
        self.graphemes(true).collect::<Vec<&str>>()
    }

    #[inline(always)]
    fn get_grapheme_chunk(&self, offset: usize) -> Vec<&str> {
        self.graphemes(true).skip(offset).collect::<Vec<&str>>()
    }
}

impl RUMStringConversions for RUMString {}
impl AsStr for RUMString {
    fn as_str(&self) -> &str {
        self.as_str()
    }
}
impl StringUtils for RUMString {}

impl UTFStringExtensions for str {
    #[inline(always)]
    fn count_graphemes(&self) -> usize {
        self.graphemes(true).count()
    }

    #[inline(always)]
    fn get_grapheme(&self, index: usize) -> &str {
        self.graphemes(true)
            .nth(index)
            .or(EMPTY_STRING_OPTION)
            .unwrap()
    }

    #[inline(always)]
    fn get_graphemes(&self) -> Vec<&str> {
        self.graphemes(true).collect::<Vec<&str>>()
    }

    #[inline(always)]
    fn get_grapheme_chunk(&self, offset: usize) -> Vec<&str> {
        self.graphemes(true).skip(offset).collect::<Vec<&str>>()
    }
}

impl RUMStringConversions for str {}

impl AsStr for str {
    fn as_str(&self) -> &str {
        self
    }
}

impl StringUtils for str {}

impl RUMStringConversions for char {}

/**************************** Helpers ***************************************/

pub fn count_tokens_ignoring_pattern(vector: &Vec<&str>, string_token: &RUMString) -> usize {
    let mut count: usize = 0;
    for tok in vector.iter() {
        if string_token != tok {
            count += 1;
        }
    }
    count
}

///
/// Implements decoding this string from its auto-detected encoding to UTF-8.
/// Failing that we assume the string was encoded in UTF-8 and return a copy.
///
/// Note => Decoding is facilitated via the crates chardet-ng and encoding_rs.
///
pub fn try_decode(src: &[u8]) -> RUMString {
    let mut detector = EncodingDetector::new();
    detector.feed(&src, true);
    let encoding = detector.guess(None, true);
    decode(src, encoding)
}

///
/// Implements decoding this string from a specific encoding to UTF-8.
///
/// Note => Decoding is facilitated via the crates chardet-ng and encoding_rs.
///
pub fn try_decode_with(src: &[u8], encoding_name: &str) -> RUMString {
    let encoding = match Encoding::for_label(encoding_name.as_bytes()) {
        Some(v) => v,
        None => return RUMString::from(""),
    };
    decode(src, encoding)
}

///
/// Implements decoding of input with encoder.
///
/// Note => Decoding is facilitated via the crate encoding_rs.
///
fn decode(src: &[u8], encoding: &'static Encoding) -> RUMString {
    match encoding.decode_without_bom_handling_and_without_replacement(&src) {
        Some(res) => RUMString::from(res),
        None => RUMString::from_utf8(src).unwrap(),
    }
}

///
/// This function will scan through an escaped string and unescape any escaped characters.
/// We collect these characters as a byte vector.
/// Finally, we do a decode pass on the vector to re-encode the bytes **hopefully right** into a
/// valid UTF-8 string.
///
pub fn unescape_string(escaped_str: &str) -> Result<RUMString, RUMString> {
    let str_size = escaped_str.count_graphemes();
    let mut result: Vec<u8> = Vec::with_capacity(escaped_str.len());
    let mut i = 0;
    while i < str_size {
        let seq_start = escaped_str.get_grapheme(i);
        match seq_start {
            "\\" => {
                let escape_seq = escaped_str.get_grapheme_string(" ", i);
                let mut c = match unescape(&escape_seq) {
                    Ok(c) => c,
                    Err(_why) => Vec::from(escape_seq.as_bytes()),
                };
                result.append(&mut c);
                i += &escape_seq.count_graphemes();
            }
            _ => {
                result.append(&mut Vec::from(seq_start.as_bytes()));
                i += 1;
            }
        }
    }
    Ok(try_decode(result.as_slice()))
}

///
/// Turn escaped character sequence into the equivalent UTF-8 character
/// This function accepts \o, \x and \u formats.
/// This function will also attempt to unescape the common C style control characters.
/// Anything else needs to be expressed as hex or octal patterns with the formats above.
///
/// If I did this right, I should get the "raw" byte sequence out of the escaped string.
/// We can then use the bytes and attempt a decode() to figure out the string encoding and
/// get the correct conversion to UTF-8. **Fingers crossed**
///
pub fn unescape(escaped_str: &str) -> Result<Vec<u8>, RUMString> {
    let lower_case = escaped_str.to_lowercase();
    let mut bytes: Vec<u8> = Vec::with_capacity(3);
    match &lower_case[0..2] {
        // Hex notation case. Assume we are getting xxyy bytes
        "\\x" => {
            let byte_str = number_to_char_unchecked(&hex_to_number(&lower_case[2..6])?);
            bytes.append(&mut byte_str.as_bytes().to_vec());
        }
        // Unicode notation case, we need to do an extra step or we will lose key bytes.
        "\\u" => {
            let byte_str = number_to_char_unchecked(&hex_to_number(&lower_case[2..6])?);
            bytes.append(&mut byte_str.as_bytes().to_vec());
        }
        // Single byte notation case
        "\\c" => {
            let byte_str = number_to_char_unchecked(&hex_to_number(&lower_case[2..6])?);
            bytes.append(&mut byte_str.as_bytes().to_vec());
        }
        // Unicode notation case
        "\\o" => {
            let byte_str = number_to_char_unchecked(&octal_to_number(&lower_case[2..6])?);
            bytes.append(&mut byte_str.as_bytes().to_vec());
        }
        // Multibyte notation case
        "\\m" => match lower_case.count_graphemes() {
            8 => {
                bytes.push(hex_to_byte(&lower_case[2..4])?);
                bytes.push(hex_to_byte(&lower_case[4..6])?);
                bytes.push(hex_to_byte(&lower_case[6..8])?);
            }
            6 => {
                bytes.push(hex_to_byte(&lower_case[2..4])?);
                bytes.push(hex_to_byte(&lower_case[4..6])?);
            }
            _ => {
                return Err(format_compact!(
                    "Unknown multibyte sequence. Cannot decode {}",
                    lower_case
                ))
            }
        },
        // Custom encoding
        "\\z" => bytes.append(&mut lower_case.as_bytes().to_vec()),
        // Single byte codes.
        _ => bytes.push(unescape_control_byte(&lower_case)?),
    }
    Ok(bytes)
}

///
/// Unescape basic character
/// We use pattern matching to map the basic escape character to its corresponding integer value.
///
fn unescape_control(escaped_str: &str) -> Result<char, RUMString> {
    match escaped_str {
        // Common control sequences
        "\\t" => Ok('\t'),
        "\\b" => Ok('\x08'),
        "\\n" => Ok('\n'),
        "\\r" => Ok('\r'),
        "\\f" => Ok('\x14'),
        "\\s" => Ok('\x20'),
        "\\\\" => Ok(ASCII_ESCAPE_CHAR),
        "\\'" => Ok('\''),
        "\\\"" => Ok('\"'),
        "\\0" => Ok('\0'),
        "\\v" => Ok('\x0B'),
        "\\a" => Ok('\x07'),
        // Control sequences by
        _ => Err(format_compact!(
            "Unknown escape sequence? Sequence: {}!",
            escaped_str
        )),
    }
}

///
/// Unescape basic character
/// We use pattern matching to map the basic escape character to its corresponding integer value.
///
fn unescape_control_byte(escaped_str: &str) -> Result<u8, RUMString> {
    match escaped_str {
        // Common control sequences
        "\\t" => Ok(9),   // Tab/Character Tabulation
        "\\b" => Ok(8),   // Backspace
        "\\n" => Ok(10),  // New line/ Line Feed character
        "\\r" => Ok(13),  // Carriage Return character
        "\\f" => Ok(12),  // Form Feed
        "\\s" => Ok(32),  // Space
        "\\\\" => Ok(27), // Escape
        "\\'" => Ok(39),  // Single quote
        "\\\"" => Ok(34), // Double quote
        "\\0" => Ok(0),   // Null character
        "\\v" => Ok(11),  // Vertical Tab/Line Tabulation
        "\\a" => Ok(7),   // Alert bell
        // Control sequences by hex
        //Err(format_compact!("Unknown escape sequence? Sequence: {}!", escaped_str))
        _ => hex_to_byte(&escaped_str[2..]),
    }
}

///
/// Turn hex string to number (u32)
///
fn hex_to_number(hex_str: &str) -> Result<u32, RUMString> {
    match u32::from_str_radix(&hex_str, 16) {
        Ok(result) => Ok(result),
        Err(val) => Err(format_compact!(
            "Failed to parse string with error {}! Input string {} \
        is not hex string!",
            val,
            hex_str
        )),
    }
}

///
/// Turn hex string to byte (u8)
///
fn hex_to_byte(hex_str: &str) -> Result<u8, RUMString> {
    match u8::from_str_radix(&hex_str, 16) {
        Ok(result) => Ok(result),
        Err(val) => Err(format_compact!(
            "Failed to parse string with error {}! Input string {} \
        is not hex string!",
            val,
            hex_str
        )),
    }
}

///
/// Turn octal string to number (u32)
///
fn octal_to_number(hoctal_str: &str) -> Result<u32, RUMString> {
    match u32::from_str_radix(&hoctal_str, 8) {
        Ok(result) => Ok(result),
        Err(val) => Err(format_compact!(
            "Failed to parse string with error {}! Input string {} \
        is not an octal string!",
            val,
            hoctal_str
        )),
    }
}

///
/// Turn octal string to byte (u32)
///
fn octal_to_byte(hoctal_str: &str) -> Result<u8, RUMString> {
    match u8::from_str_radix(&hoctal_str, 8) {
        Ok(result) => Ok(result),
        Err(val) => Err(format_compact!(
            "Failed to parse string with error {}! Input string {} \
        is not an octal string!",
            val,
            hoctal_str
        )),
    }
}

///
/// Turn number to UTF-8 char
///
fn number_to_char(num: &u32) -> Result<RUMString, RUMString> {
    match char::from_u32(*num) {
        Some(result) => Ok(result.to_rumstring()),
        None => Err(format_compact!(
            "Failed to cast number to character! Number {}",
            num
        )),
    }
}

///
/// Turn number to UTF-8 char. Normally, calling from_u32 checks if the value is a valid character.
/// This version uses the less safe from_u32_unchecked() function because we want to get the bytes
/// and deal with validity at a higher layer.
///
fn number_to_char_unchecked(num: &u32) -> RUMString {
    unsafe { char::from_u32_unchecked(*num).to_rumstring() }
}

///
/// This function will scan through an unescaped string and escape any characters outside the
/// ASCII printable range.
///
pub fn escape_str(in_str: &str) -> RUMString {
    let max_str_size = 4 * in_str.len();
    let mut result = RUMString::with_capacity(max_str_size);
    for c in in_str.chars() {
        if c < MIN_ASCII_READABLE || c > MAX_ASCII_READABLE {
            result += &escape(c.to_string().as_str());
        } else {
            result.push(c);
        }
    }
    result
}

///
/// Turn UTF-8 character into escaped character sequence
///
pub fn escape(unescaped_str: &str) -> RUMString {
    let escaped_value = unescaped_str.escape_default().to_string();
    escaped_value
        .replace("{", "")
        .replace("}", "")
        .to_rumstring()
}