logo
#[repr(transparent)]
pub struct BorrowInteger<'a> { /* private fields */ }
Expand description

Used to get a reference to an Integer.

The struct implements Deref<Target = Integer>.

No memory is unallocated when this struct is dropped.

Examples

use rug::{integer::BorrowInteger, Integer};
let i = Integer::from(42);
let neg: BorrowInteger = i.as_neg();
// i is still valid
assert_eq!(i, 42);
assert_eq!(*neg, -42);

Implementations

Create a borrow from a raw GMP integer.

Safety
  • The value must be initialized.
  • The mpz_t type can be considered as a kind of pointer, so there can be multiple copies of it. BorrowInteger cannot mutate the value, so there can be other copies, but none of them are allowed to mutate the value.
  • The lifetime is obtained from the return type. The user must ensure the value remains valid for the duration of the lifetime.
Examples
use rug::{integer::BorrowInteger, Integer};
let i = Integer::from(42);
// Safety: i.as_raw() is a valid pointer.
let raw = unsafe { *i.as_raw() };
// Safety: i is still valid when borrow is used.
let borrow = unsafe { BorrowInteger::from_raw(raw) };
assert_eq!(i, *borrow);

Methods from Deref<Target = Integer>

Returns the capacity in bits that can be stored without reallocating.

Examples
use rug::Integer;
let i = Integer::with_capacity(137);
assert!(i.capacity() >= 137);

Returns a pointer to the inner GMP integer.

The returned pointer will be valid for as long as self is valid.

Examples
use gmp_mpfr_sys::gmp;
use rug::Integer;
let i = Integer::from(15);
let z_ptr = i.as_raw();
unsafe {
    let u = gmp::mpz_get_ui(z_ptr);
    assert_eq!(u, 15);
}
// i is still valid
assert_eq!(i, 15);

Returns the number of digits of type T required to represent the absolute value.

T can be any unsigned integer primitive type.

Examples
use rug::Integer;

let i: Integer = Integer::from(1) << 256;
assert_eq!(i.significant_digits::<bool>(), 257);
assert_eq!(i.significant_digits::<u8>(), 33);
assert_eq!(i.significant_digits::<u16>(), 17);
assert_eq!(i.significant_digits::<u32>(), 9);
assert_eq!(i.significant_digits::<u64>(), 5);

Converts the absolute value to a Vec of digits of type T, where T can be any unsigned integer primitive type.

The Integer type also has the as_limbs method, which can be used to borrow the digits without copying them. This does come with some more constraints compared to to_digits:

  1. The digit width is not optional and depends on the implementation: limb_t is typically u64 on 64-bit systems and u32 on 32-bit systems.
  2. The order is not optional and is least significant digit first, with each digit in the target’s endianness, equivalent to Order::Lsf.
Examples
use rug::{integer::Order, Integer};
let i = Integer::from(0x1234_5678_9abc_def0u64);
let digits = i.to_digits::<u32>(Order::MsfBe);
assert_eq!(digits, [0x1234_5678u32.to_be(), 0x9abc_def0u32.to_be()]);

let zero = Integer::new();
let digits_zero = zero.to_digits::<u32>(Order::MsfBe);
assert!(digits_zero.is_empty());

Writes the absolute value into a slice of digits of type T, where T can be any unsigned integer primitive type.

The slice must be large enough to hold the digits; the minimum size can be obtained using the significant_digits method.

Panics

Panics if the slice does not have sufficient capacity.

Examples
use rug::{integer::Order, Integer};
let i = Integer::from(0x1234_5678_9abc_def0u64);
let mut digits = [0xffff_ffffu32; 4];
i.write_digits(&mut digits, Order::MsfBe);
let word0 = 0x9abc_def0u32;
let word1 = 0x1234_5678u32;
assert_eq!(digits, [0, 0, word1.to_be(), word0.to_be()]);

Writes the absolute value into a memory area of digits of type T, where T can be any unsigned integer primitive type.

The memory area is addressed using a pointer and a length. The len parameter is the number of digits, not the number of bytes.

The length must be large enough to hold the digits; the minimum length can be obtained using the significant_digits method.

There are no data alignment restrictions on dst, any address is allowed.

The memory locations can be uninitialized before this method is called; this method sets all len elements, padding with zeros if the length is larger than required.

Safety

To avoid undefined behavior, dst must be valid for writing len digits, that is len × size_of::<T>() bytes.

Panics

Panics if the length is less than the number of digits.

Examples
use rug::{integer::Order, Integer};
let i = Integer::from(0xfedc_ba98_7654_3210u64);
let mut digits = [0xffff_ffffu32; 4];
let ptr = digits.as_mut_ptr();
unsafe {
    let unaligned = (ptr as *mut u8).offset(2) as *mut u32;
    i.write_digits_unaligned(unaligned, 3, Order::MsfBe);
}
assert_eq!(
    digits,
    [
        0xffff_0000u32.to_be(),
        0x0000_fedcu32.to_be(),
        0xba98_7654u32.to_be(),
        0x3210_ffffu32.to_be(),
    ]
);

The following example shows how to write into uninitialized memory. In practice, the following code could be replaced by a call to the safe method to_digits.

use rug::{integer::Order, Integer};
let i = Integer::from(0x1234_5678_9abc_def0u64);
let len = i.significant_digits::<u32>();
assert_eq!(len, 2);

// The following code is equivalent to:
//     let digits = i.to_digits::<u32>(Order::MsfBe);
let mut digits = Vec::<u32>::with_capacity(len);
let ptr = digits.as_mut_ptr();
unsafe {
    i.write_digits_unaligned(ptr, len, Order::MsfBe);
    digits.set_len(len);
}

assert_eq!(digits, [0x1234_5678u32.to_be(), 0x9abc_def0u32.to_be()]);

Extracts a slice of limbs used to store the value.

The slice contains the absolute value of self, with the least significant limb first.

The Integer type also implements AsRef<[limb_t]>, which is equivalent to this method.

Examples
use rug::Integer;
assert!(Integer::new().as_limbs().is_empty());
assert_eq!(Integer::from(13).as_limbs(), &[13]);
assert_eq!(Integer::from(-23).as_limbs(), &[23]);

int.as_limbs() is like a borrowing non-copy version of int.to_digits::<[limb_t]>(Order::Lsf).

use gmp_mpfr_sys::gmp::limb_t;
use rug::{integer::Order, Integer};
let int = Integer::from(0x1234_5678_9abc_def0u64);
// no copying for int_slice, which is borrowing int
let int_slice = int.as_limbs();
// digits is a copy and does not borrow int
let digits = int.to_digits::<limb_t>(Order::Lsf);
// no copying for digits_slice, which is borrowing digits
let digits_slice = &digits[..];
assert_eq!(int_slice, digits_slice);

Converts to an i8 if the value fits.

This conversion can also be performed using

Examples
use rug::Integer;
let fits = Integer::from(-100);
assert_eq!(fits.to_i8(), Some(-100));
let small = Integer::from(-200);
assert_eq!(small.to_i8(), None);
let large = Integer::from(200);
assert_eq!(large.to_i8(), None);

Converts to an i16 if the value fits.

This conversion can also be performed using

Examples
use rug::Integer;
let fits = Integer::from(-30_000);
assert_eq!(fits.to_i16(), Some(-30_000));
let small = Integer::from(-40_000);
assert_eq!(small.to_i16(), None);
let large = Integer::from(40_000);
assert_eq!(large.to_i16(), None);

Converts to an i32 if the value fits.

This conversion can also be performed using

Examples
use rug::Integer;
let fits = Integer::from(-50);
assert_eq!(fits.to_i32(), Some(-50));
let small = Integer::from(-123456789012345_i64);
assert_eq!(small.to_i32(), None);
let large = Integer::from(123456789012345_i64);
assert_eq!(large.to_i32(), None);

Converts to an i64 if the value fits.

This conversion can also be performed using

Examples
use rug::Integer;
let fits = Integer::from(-50);
assert_eq!(fits.to_i64(), Some(-50));
let small = Integer::from_str_radix("-fedcba9876543210", 16).unwrap();
assert_eq!(small.to_i64(), None);
let large = Integer::from_str_radix("fedcba9876543210", 16).unwrap();
assert_eq!(large.to_i64(), None);

Converts to an i128 if the value fits.

This conversion can also be performed using

Examples
use rug::Integer;
let fits = Integer::from(-50);
assert_eq!(fits.to_i128(), Some(-50));
let small: Integer = Integer::from(-1) << 130;
assert_eq!(small.to_i128(), None);
let large: Integer = Integer::from(1) << 130;
assert_eq!(large.to_i128(), None);

Converts to an isize if the value fits.

This conversion can also be performed using

Examples
use rug::Integer;
let fits = Integer::from(0x1000);
assert_eq!(fits.to_isize(), Some(0x1000));
let large: Integer = Integer::from(0x1000) << 128;
assert_eq!(large.to_isize(), None);

Converts to an u8 if the value fits.

This conversion can also be performed using

Examples
use rug::Integer;
let fits = Integer::from(200);
assert_eq!(fits.to_u8(), Some(200));
let neg = Integer::from(-1);
assert_eq!(neg.to_u8(), None);
let large = Integer::from(300);
assert_eq!(large.to_u8(), None);

Converts to an u16 if the value fits.

This conversion can also be performed using

Examples
use rug::Integer;
let fits = Integer::from(60_000);
assert_eq!(fits.to_u16(), Some(60_000));
let neg = Integer::from(-1);
assert_eq!(neg.to_u16(), None);
let large = Integer::from(70_000);
assert_eq!(large.to_u16(), None);

Converts to an u32 if the value fits.

This conversion can also be performed using

Examples
use rug::Integer;
let fits = Integer::from(1234567890);
assert_eq!(fits.to_u32(), Some(1234567890));
let neg = Integer::from(-1);
assert_eq!(neg.to_u32(), None);
let large = Integer::from(123456789012345_u64);
assert_eq!(large.to_u32(), None);

Converts to an u64 if the value fits.

This conversion can also be performed using

Examples
use rug::Integer;
let fits = Integer::from(123456789012345_u64);
assert_eq!(fits.to_u64(), Some(123456789012345));
let neg = Integer::from(-1);
assert_eq!(neg.to_u64(), None);
let large = "1234567890123456789012345".parse::<Integer>().unwrap();
assert_eq!(large.to_u64(), None);

Converts to an u128 if the value fits.

This conversion can also be performed using

Examples
use rug::Integer;
let fits = Integer::from(12345678901234567890_u128);
assert_eq!(fits.to_u128(), Some(12345678901234567890));
let neg = Integer::from(-1);
assert_eq!(neg.to_u128(), None);
let large = "1234567890123456789012345678901234567890"
    .parse::<Integer>()
    .unwrap();
assert_eq!(large.to_u128(), None);

Converts to an usize if the value fits.

This conversion can also be performed using

Examples
use rug::Integer;
let fits = Integer::from(0x1000);
assert_eq!(fits.to_usize(), Some(0x1000));
let neg = Integer::from(-1);
assert_eq!(neg.to_usize(), None);
let large: Integer = Integer::from(0x1000) << 128;
assert_eq!(large.to_usize(), None);

Converts to an i8, wrapping if the value does not fit.

This conversion can also be performed using

Examples
use rug::Integer;
let large = Integer::from(0x1234);
assert_eq!(large.to_i8_wrapping(), 0x34);

Converts to an i16, wrapping if the value does not fit.

This conversion can also be performed using

Examples
use rug::Integer;
let large = Integer::from(0x1234_5678);
assert_eq!(large.to_i16_wrapping(), 0x5678);

Converts to an i32, wrapping if the value does not fit.

This conversion can also be performed using

Examples
use rug::Integer;
let large = Integer::from(0x1234_5678_9abc_def0_u64);
assert_eq!(large.to_i32_wrapping(), 0x9abc_def0_u32 as i32);

Converts to an i64, wrapping if the value does not fit.

This conversion can also be performed using

Examples
use rug::Integer;
let large = Integer::from_str_radix("f123456789abcdef0", 16).unwrap();
assert_eq!(large.to_i64_wrapping(), 0x1234_5678_9abc_def0);

Converts to an i128, wrapping if the value does not fit.

This conversion can also be performed using

Examples
use rug::Integer;
let s = "f123456789abcdef0123456789abcdef0";
let large = Integer::from_str_radix(s, 16).unwrap();
assert_eq!(
    large.to_i128_wrapping(),
    0x1234_5678_9abc_def0_1234_5678_9abc_def0
);

Converts to an isize, wrapping if the value does not fit.

This conversion can also be performed using

Examples
use rug::Integer;
let large: Integer = (Integer::from(0x1000) << 128) | 0x1234;
assert_eq!(large.to_isize_wrapping(), 0x1234);

Converts to a u8, wrapping if the value does not fit.

This conversion can also be performed using

Examples
use rug::Integer;
let neg = Integer::from(-1);
assert_eq!(neg.to_u8_wrapping(), 0xff);
let large = Integer::from(0x1234);
assert_eq!(large.to_u8_wrapping(), 0x34);

Converts to a u16, wrapping if the value does not fit.

This conversion can also be performed using

Examples
use rug::Integer;
let neg = Integer::from(-1);
assert_eq!(neg.to_u16_wrapping(), 0xffff);
let large = Integer::from(0x1234_5678);
assert_eq!(large.to_u16_wrapping(), 0x5678);

Converts to a u32, wrapping if the value does not fit.

This conversion can also be performed using

Examples
use rug::Integer;
let neg = Integer::from(-1);
assert_eq!(neg.to_u32_wrapping(), 0xffff_ffff);
let large = Integer::from(0x1234_5678_9abc_def0_u64);
assert_eq!(large.to_u32_wrapping(), 0x9abc_def0);

Converts to a u64, wrapping if the value does not fit.

This conversion can also be performed using

Examples
use rug::Integer;
let neg = Integer::from(-1);
assert_eq!(neg.to_u64_wrapping(), 0xffff_ffff_ffff_ffff);
let large = Integer::from_str_radix("f123456789abcdef0", 16).unwrap();
assert_eq!(large.to_u64_wrapping(), 0x1234_5678_9abc_def0);

Converts to a u128, wrapping if the value does not fit.

This conversion can also be performed using

Examples
use rug::Integer;
let neg = Integer::from(-1);
assert_eq!(
    neg.to_u128_wrapping(),
    0xffff_ffff_ffff_ffff_ffff_ffff_ffff_ffff
);
let s = "f123456789abcdef0123456789abcdef0";
let large = Integer::from_str_radix(s, 16).unwrap();
assert_eq!(
    large.to_u128_wrapping(),
    0x1234_5678_9abc_def0_1234_5678_9abc_def0
);

Converts to a usize, wrapping if the value does not fit.

This conversion can also be performed using

Examples
use rug::Integer;
let large: Integer = (Integer::from(0x1000) << 128) | 0x1234;
assert_eq!(large.to_usize_wrapping(), 0x1234);

Converts to an f32, rounding towards zero.

This conversion can also be performed using

Examples
use core::f32;
use rug::Integer;
let min = Integer::from_f32(f32::MIN).unwrap();
let min_minus_one = min - 1u32;
// min_minus_one is truncated to f32::MIN
assert_eq!(min_minus_one.to_f32(), f32::MIN);
let times_two = min_minus_one * 2u32;
// times_two is too small
assert_eq!(times_two.to_f32(), f32::NEG_INFINITY);

Converts to an f64, rounding towards zero.

This conversion can also be performed using

Examples
use core::f64;
use rug::Integer;

// An `f64` has 53 bits of precision.
let exact = 0x1f_ffff_ffff_ffff_u64;
let i = Integer::from(exact);
assert_eq!(i.to_f64(), exact as f64);

// large has 56 ones
let large = 0xff_ffff_ffff_ffff_u64;
// trunc has 53 ones followed by 3 zeros
let trunc = 0xff_ffff_ffff_fff8_u64;
let j = Integer::from(large);
assert_eq!(j.to_f64() as u64, trunc);

let max = Integer::from_f64(f64::MAX).unwrap();
let max_plus_one = max + 1u32;
// max_plus_one is truncated to f64::MAX
assert_eq!(max_plus_one.to_f64(), f64::MAX);
let times_two = max_plus_one * 2u32;
// times_two is too large
assert_eq!(times_two.to_f64(), f64::INFINITY);

Converts to an f32 and an exponent, rounding towards zero.

The returned f32 is in the range 0.5 ≤ x < 1. If the value is zero, (0.0, 0) is returned.

Examples
use rug::Integer;
let zero = Integer::new();
let (d0, exp0) = zero.to_f32_exp();
assert_eq!((d0, exp0), (0.0, 0));
let fifteen = Integer::from(15);
let (d15, exp15) = fifteen.to_f32_exp();
assert_eq!((d15, exp15), (15.0 / 16.0, 4));

Converts to an f64 and an exponent, rounding towards zero.

The returned f64 is in the range 0.5 ≤ x < 1. If the value is zero, (0.0, 0) is returned.

Examples
use rug::Integer;
let zero = Integer::new();
let (d0, exp0) = zero.to_f64_exp();
assert_eq!((d0, exp0), (0.0, 0));
let fifteen = Integer::from(15);
let (d15, exp15) = fifteen.to_f64_exp();
assert_eq!((d15, exp15), (15.0 / 16.0, 4));

Returns a string representation of the number for the specified radix.

Panics

Panics if radix is less than 2 or greater than 36.

Examples
use rug::{Assign, Integer};
let mut i = Integer::new();
assert_eq!(i.to_string_radix(10), "0");
i.assign(-10);
assert_eq!(i.to_string_radix(16), "-a");
i.assign(0x1234cdef);
assert_eq!(i.to_string_radix(4), "102031030313233");
i.assign(Integer::parse_radix("123456789aAbBcCdDeEfF", 16).unwrap());
assert_eq!(i.to_string_radix(16), "123456789aabbccddeeff");

Borrows a negated copy of the Integer.

The returned object implements Deref<Target = Integer>.

This method performs a shallow copy and negates it, and negation does not change the allocated data.

Examples
use rug::Integer;
let i = Integer::from(42);
let neg_i = i.as_neg();
assert_eq!(*neg_i, -42);
// methods taking &self can be used on the returned object
let reneg_i = neg_i.as_neg();
assert_eq!(*reneg_i, 42);
assert_eq!(*reneg_i, i);

Borrows an absolute copy of the Integer.

The returned object implements Deref<Target = Integer>.

This method performs a shallow copy and possibly negates it, and negation does not change the allocated data.

Examples
use rug::Integer;
let i = Integer::from(-42);
let abs_i = i.as_abs();
assert_eq!(*abs_i, 42);
// methods taking &self can be used on the returned object
let reabs_i = abs_i.as_abs();
assert_eq!(*reabs_i, 42);
assert_eq!(*reabs_i, *abs_i);

Borrows a copy of the Integer as a Rational number.

The returned object implements Deref<Target = Rational>.

Examples
use rug::Integer;
let i = Integer::from(42);
let r = i.as_rational();
assert_eq!(*r, (42, 1));
// methods taking &self can be used on the returned object
let recip_r = r.as_recip();
assert_eq!(*recip_r, (1, 42));

Returns true if the number is even.

Examples
use rug::Integer;
assert!(!(Integer::from(13).is_even()));
assert!(Integer::from(-14).is_even());

Returns true if the number is odd.

Examples
use rug::Integer;
assert!(Integer::from(13).is_odd());
assert!(!Integer::from(-14).is_odd());

Returns true if the number is divisible by divisor. Unlike other division functions, divisor can be zero.

Examples
use rug::Integer;
let i = Integer::from(230);
assert!(i.is_divisible(&Integer::from(10)));
assert!(!i.is_divisible(&Integer::from(100)));
assert!(!i.is_divisible(&Integer::new()));

Returns true if the number is divisible by divisor. Unlike other division functions, divisor can be zero.

Examples
use rug::Integer;
let i = Integer::from(230);
assert!(i.is_divisible_u(23));
assert!(!i.is_divisible_u(100));
assert!(!i.is_divisible_u(0));

Returns true if the number is divisible by 2b.

Examples
use rug::Integer;
let i = Integer::from(15 << 17);
assert!(i.is_divisible_2pow(16));
assert!(i.is_divisible_2pow(17));
assert!(!i.is_divisible_2pow(18));

Returns true if the number is congruent to c mod divisor, that is, if there exists a q such that self = c + q × divisor. Unlike other division functions, divisor can be zero.

Examples
use rug::Integer;
let n = Integer::from(105);
let divisor = Integer::from(10);
assert!(n.is_congruent(&Integer::from(5), &divisor));
assert!(n.is_congruent(&Integer::from(25), &divisor));
assert!(!n.is_congruent(&Integer::from(7), &divisor));
// n is congruent to itself if divisor is 0
assert!(n.is_congruent(&n, &Integer::from(0)));

Returns true if the number is congruent to c mod divisor, that is, if there exists a q such that self = c + q × divisor. Unlike other division functions, divisor can be zero.

Examples
use rug::Integer;
let n = Integer::from(105);
assert!(n.is_congruent_u(3335, 10));
assert!(!n.is_congruent_u(107, 10));
// n is congruent to itself if divisor is 0
assert!(n.is_congruent_u(105, 0));

Returns true if the number is congruent to c mod 2b, that is, if there exists a q such that self = c + q × 2b.

Examples
use rug::Integer;
let n = Integer::from(13 << 17 | 21);
assert!(n.is_congruent_2pow(&Integer::from(7 << 17 | 21), 17));
assert!(!n.is_congruent_2pow(&Integer::from(13 << 17 | 22), 17));

Returns true if the number is a perfect power.

Examples
use rug::Integer;
// 0 is 0 to the power of anything
assert!(Integer::from(0).is_perfect_power());
// 25 is 5 to the power of 2
assert!(Integer::from(25).is_perfect_power());
// -243 is -3 to the power of 5
assert!(Integer::from(243).is_perfect_power());

assert!(!Integer::from(24).is_perfect_power());
assert!(!Integer::from(-100).is_perfect_power());

Returns true if the number is a perfect square.

Examples
use rug::Integer;
assert!(Integer::from(0).is_perfect_square());
assert!(Integer::from(1).is_perfect_square());
assert!(Integer::from(4).is_perfect_square());
assert!(Integer::from(9).is_perfect_square());

assert!(!Integer::from(15).is_perfect_square());
assert!(!Integer::from(-9).is_perfect_square());

Returns true if the number is a power of two.

Examples
use rug::Integer;
assert!(Integer::from(1).is_power_of_two());
assert!(Integer::from(4).is_power_of_two());
assert!(Integer::from(1 << 30).is_power_of_two());

assert!(!Integer::from(7).is_power_of_two());
assert!(!Integer::from(0).is_power_of_two());
assert!(!Integer::from(-1).is_power_of_two());

Returns the same result as self.cmp(&0.into()), but is faster.

Examples
use core::cmp::Ordering;
use rug::Integer;
assert_eq!(Integer::from(-5).cmp0(), Ordering::Less);
assert_eq!(Integer::from(0).cmp0(), Ordering::Equal);
assert_eq!(Integer::from(5).cmp0(), Ordering::Greater);

Compares the absolute values.

Examples
use core::cmp::Ordering;
use rug::Integer;
let a = Integer::from(-10);
let b = Integer::from(4);
assert_eq!(a.cmp(&b), Ordering::Less);
assert_eq!(a.cmp_abs(&b), Ordering::Greater);

Returns the number of bits required to represent the absolute value.

Examples
use rug::Integer;

assert_eq!(Integer::from(0).significant_bits(), 0);  //    “”
assert_eq!(Integer::from(1).significant_bits(), 1);  //   “1”
assert_eq!(Integer::from(4).significant_bits(), 3);  // “100”
assert_eq!(Integer::from(7).significant_bits(), 3);  // “111”
assert_eq!(Integer::from(-1).significant_bits(), 1); //   “1”
assert_eq!(Integer::from(-4).significant_bits(), 3); // “100”
assert_eq!(Integer::from(-7).significant_bits(), 3); // “111”

Returns the number of bits required to represent the value using a two’s-complement representation.

For non-negative numbers, this method returns one more than the significant_bits method, since an extra zero is needed before the most significant bit.

Examples
use rug::Integer;

assert_eq!(Integer::from(-5).signed_bits(), 4); // “1011”
assert_eq!(Integer::from(-4).signed_bits(), 3); //  “100”
assert_eq!(Integer::from(-3).signed_bits(), 3); //  “101”
assert_eq!(Integer::from(-2).signed_bits(), 2); //   “10”
assert_eq!(Integer::from(-1).signed_bits(), 1); //    “1”
assert_eq!(Integer::from(0).signed_bits(), 1);  //    “0”
assert_eq!(Integer::from(1).signed_bits(), 2);  //   “01”
assert_eq!(Integer::from(2).signed_bits(), 3);  //  “010”
assert_eq!(Integer::from(3).signed_bits(), 3);  //  “011”
assert_eq!(Integer::from(4).signed_bits(), 4);  // “0100”

Returns the number of one bits if the value ≥ 0.

Examples
use rug::Integer;
assert_eq!(Integer::from(0).count_ones(), Some(0));
assert_eq!(Integer::from(15).count_ones(), Some(4));
assert_eq!(Integer::from(-1).count_ones(), None);

Returns the number of zero bits if the value < 0.

Examples
use rug::Integer;
assert_eq!(Integer::from(0).count_zeros(), None);
assert_eq!(Integer::from(1).count_zeros(), None);
assert_eq!(Integer::from(-1).count_zeros(), Some(0));
assert_eq!(Integer::from(-2).count_zeros(), Some(1));
assert_eq!(Integer::from(-7).count_zeros(), Some(2));
assert_eq!(Integer::from(-8).count_zeros(), Some(3));

Returns the location of the first zero, starting at start. If the bit at location start is zero, returns start.

use rug::Integer;
// -2 is ...11111110
assert_eq!(Integer::from(-2).find_zero(0), Some(0));
assert_eq!(Integer::from(-2).find_zero(1), None);
// 15 is ...00001111
assert_eq!(Integer::from(15).find_zero(0), Some(4));
assert_eq!(Integer::from(15).find_zero(20), Some(20));

Returns the location of the first one, starting at start. If the bit at location start is one, returns start.

use rug::Integer;
// 1 is ...00000001
assert_eq!(Integer::from(1).find_one(0), Some(0));
assert_eq!(Integer::from(1).find_one(1), None);
// -16 is ...11110000
assert_eq!(Integer::from(-16).find_one(0), Some(4));
assert_eq!(Integer::from(-16).find_one(20), Some(20));

Returns true if the bit at location index is 1 or false if the bit is 0.

Examples
use rug::Integer;
let i = Integer::from(0b100101);
assert!(i.get_bit(0));
assert!(!i.get_bit(1));
assert!(i.get_bit(5));
let neg = Integer::from(-1);
assert!(neg.get_bit(1000));

Retuns the Hamming distance if the two numbers have the same sign.

The Hamming distance is the number of different bits.

Examples
use rug::Integer;
let i = Integer::from(-1);
assert_eq!(Integer::from(0).hamming_dist(&i), None);
assert_eq!(Integer::from(-1).hamming_dist(&i), Some(0));
// -1 is ...11111111 and -13 is ...11110011
assert_eq!(Integer::from(-13).hamming_dist(&i), Some(2));

Computes the absolute value.

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::Integer;
let i = Integer::from(-100);
let r = i.abs_ref();
let abs = Integer::from(r);
assert_eq!(abs, 100);
assert_eq!(i, -100);

Computes the signum.

  • 0 if the value is zero
  • 1 if the value is positive
  • −1 if the value is negative

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::Integer;
let i = Integer::from(-100);
let r = i.signum_ref();
let signum = Integer::from(r);
assert_eq!(signum, -1);
assert_eq!(i, -100);

Clamps the value within the specified bounds.

The following are implemented with the returned incomplete-computation value as Src:

Panics

Panics if the maximum value is less than the minimum value.

Examples
use rug::Integer;
let min = -10;
let max = 10;
let too_small = Integer::from(-100);
let r1 = too_small.clamp_ref(&min, &max);
let clamped1 = Integer::from(r1);
assert_eq!(clamped1, -10);
let in_range = Integer::from(3);
let r2 = in_range.clamp_ref(&min, &max);
let clamped2 = Integer::from(r2);
assert_eq!(clamped2, 3);

Keeps the n least significant bits only, producing a result that is greater or equal to 0.

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::Integer;
let i = Integer::from(-1);
let r = i.keep_bits_ref(8);
let eight_bits = Integer::from(r);
assert_eq!(eight_bits, 0xff);

Keeps the n least significant bits only, producing a negative result if the nth least significant bit is one.

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::Integer;
let i = Integer::from(-1);
let r = i.keep_signed_bits_ref(8);
let eight_bits = Integer::from(r);
assert_eq!(eight_bits, -1);

Finds the next power of two, or 1 if the number ≤ 0.

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::Integer;
let i = Integer::from(53);
let r = i.next_power_of_two_ref();
let next = Integer::from(r);
assert_eq!(next, 64);

Performs a division producing both the quotient and remainder.

The following are implemented with the returned incomplete-computation value as Src:

The remainder has the same sign as the dividend.

Examples
use rug::{Complete, Integer};
let dividend = Integer::from(-23);
let divisor = Integer::from(-10);
let (quotient, rem) = dividend.div_rem_ref(&divisor).complete();
assert_eq!(quotient, 2);
assert_eq!(rem, -3);

Performs a division producing both the quotient and remainder, with the quotient rounded up.

The sign of the remainder is the opposite of the divisor’s sign.

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::{Complete, Integer};
let dividend = Integer::from(-23);
let divisor = Integer::from(-10);
let (quotient, rem) = dividend.div_rem_ceil_ref(&divisor).complete();
assert_eq!(quotient, 3);
assert_eq!(rem, 7);

Performs a division producing both the quotient and remainder, with the quotient rounded down.

The remainder has the same sign as the divisor.

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::{Complete, Integer};
let dividend = Integer::from(-23);
let divisor = Integer::from(-10);
let (quotient, rem) = dividend.div_rem_floor_ref(&divisor).complete();
assert_eq!(quotient, 2);
assert_eq!(rem, -3);

Performs a division producing both the quotient and remainder, with the quotient rounded to the nearest integer.

When the quotient before rounding lies exactly between two integers, it is rounded away from zero.

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::{Complete, Integer};
// -28 / -10 → 3 rem 2
let dividend = Integer::from(-28);
let divisor = Integer::from(-10);
let (quotient, rem) = dividend.div_rem_round_ref(&divisor).complete();
assert_eq!(quotient, 3);
assert_eq!(rem, 2);

Performs Euclidan division producing both the quotient and remainder, with a positive remainder.

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::{Complete, Integer};
let dividend = Integer::from(-23);
let divisor = Integer::from(-10);
let (quotient, rem) = dividend.div_rem_euc_ref(&divisor).complete();
assert_eq!(quotient, 3);
assert_eq!(rem, 7);

Returns the modulo, or the remainder of Euclidean division by a u32.

The result is always zero or positive.

Panics

Panics if modulo is zero.

Examples
use rug::Integer;
let pos = Integer::from(23);
assert_eq!(pos.mod_u(1), 0);
assert_eq!(pos.mod_u(10), 3);
assert_eq!(pos.mod_u(100), 23);
let neg = Integer::from(-23);
assert_eq!(neg.mod_u(1), 0);
assert_eq!(neg.mod_u(10), 7);
assert_eq!(neg.mod_u(100), 77);

Performs an exact division.

This is much faster than normal division, but produces correct results only when the division is exact.

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::Integer;
let i = Integer::from(12345 * 54321);
let divisor = Integer::from(12345);
let r = i.div_exact_ref(&divisor);
let quotient = Integer::from(r);
assert_eq!(quotient, 54321);

Performs an exact division.

This is much faster than normal division, but produces correct results only when the division is exact.

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::Integer;
let i = Integer::from(12345 * 54321);
let r = i.div_exact_u_ref(12345);
assert_eq!(Integer::from(r), 54321);

Finds the inverse modulo modulo if an inverse exists.

The inverse exists if the modulo is not zero, and self and the modulo are co-prime, that is their GCD is 1.

The following are implemented with the unwrapped returned incomplete-computation value as Src:

Examples
use rug::Integer;
let two = Integer::from(2);
let four = Integer::from(4);
let five = Integer::from(5);

// Modulo 4, 2 has no inverse, there is no i such that 2 × i = 1.
// For this conversion, if no inverse exists, the Integer
// created is left unchanged as 0.
assert!(two.invert_ref(&four).is_none());

// Modulo 5, the inverse of 2 is 3, as 2 × 3 = 1.
let r = two.invert_ref(&five).unwrap();
let inverse = Integer::from(r);
assert_eq!(inverse, 3);

Raises a number to the power of exponent modulo modulo if an answer exists.

If the exponent is negative, then the number must have an inverse for an answer to exist.

The following are implemented with the unwrapped returned incomplete-computation value as Src:

Examples
use rug::Integer;
let two = Integer::from(2);
let thousand = Integer::from(1000);
let minus_five = Integer::from(-5);
let seven = Integer::from(7);

// Modulo 1000, 2 has no inverse: there is no i such that 2 × i = 1.
assert!(two.pow_mod_ref(&minus_five, &thousand).is_none());

// 7 × 143 modulo 1000 = 1, so 7 has an inverse 143.
// 7 ^ -5 modulo 1000 = 143 ^ 5 modulo 1000 = 943.
let r = seven.pow_mod_ref(&minus_five, &thousand).unwrap();
let power = Integer::from(r);
assert_eq!(power, 943);

Raises a number to the power of exponent modulo modulo, with resilience to side-channel attacks.

The exponent must be greater than zero, and the modulo must be odd.

This method is intended for cryptographic purposes where resilience to side-channel attacks is desired. The function is designed to take the same time and use the same cache access patterns for same-sized arguments, assuming that the arguments are placed at the same position and the machine state is identical when starting.

The following are implemented with the returned incomplete-computation value as Src:

Panics

Panics if exponent ≤ 0 or if modulo is even.

Examples
use rug::Integer;
// 7 ^ 4 mod 13 = 9
let n = Integer::from(7);
let e = Integer::from(4);
let m = Integer::from(13);
let power = Integer::from(n.secure_pow_mod_ref(&e, &m));
assert_eq!(power, 9);

Computes the nth root and truncates the result.

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::Integer;
let i = Integer::from(1004);
assert_eq!(Integer::from(i.root_ref(3)), 10);

Computes the nth root and returns the truncated root and the remainder.

The remainder is the original number minus the truncated root raised to the power of n.

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::{Assign, Complete, Integer};
let i = Integer::from(1004);
let mut root = Integer::new();
let mut rem = Integer::new();
// 1004 = 10^3 + 5
(&mut root, &mut rem).assign(i.root_rem_ref(3));
assert_eq!(root, 10);
assert_eq!(rem, 4);
// 1004 = 3^6 + 275
let (other_root, other_rem) = i.root_rem_ref(6).complete();
assert_eq!(other_root, 3);
assert_eq!(other_rem, 275);

Computes the square.

The following are implemented with the returned incomplete-computation value as Src:

i.square_ref() produces the exact same result as &i * &i.

Examples
use rug::Integer;
let i = Integer::from(13);
assert_eq!(Integer::from(i.square_ref()), 169);

Computes the square root and truncates the result.

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::Integer;
let i = Integer::from(104);
assert_eq!(Integer::from(i.sqrt_ref()), 10);

Computes the square root and the remainder.

The remainder is the original number minus the truncated root squared.

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::{Assign, Integer};
let i = Integer::from(104);
let mut sqrt = Integer::new();
let mut rem = Integer::new();
let r = i.sqrt_rem_ref();
(&mut sqrt, &mut rem).assign(r);
assert_eq!(sqrt, 10);
assert_eq!(rem, 4);
let r = i.sqrt_rem_ref();
let (other_sqrt, other_rem) = <(Integer, Integer)>::from(r);
assert_eq!(other_sqrt, 10);
assert_eq!(other_rem, 4);

Determines wheter a number is prime.

This function uses some trial divisions, a Baille-PSW probable prime test, then reps − 24 Miller-Rabin probabilistic primality tests.

Examples
use rug::{integer::IsPrime, Integer};
let no = Integer::from(163 * 4003);
assert_eq!(no.is_probably_prime(30), IsPrime::No);
let yes = Integer::from(817_504_243);
assert_eq!(yes.is_probably_prime(30), IsPrime::Yes);
// 16_412_292_043_871_650_369 is actually a prime.
let probably = Integer::from(16_412_292_043_871_650_369_u64);
assert_eq!(probably.is_probably_prime(30), IsPrime::Probably);

Identifies primes using a probabilistic algorithm; the chance of a composite passing will be extremely small.

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::Integer;
let i = Integer::from(800_000_000);
let r = i.next_prime_ref();
let prime = Integer::from(r);
assert_eq!(prime, 800_000_011);

Finds the greatest common divisor.

The result is always positive except when both inputs are zero.

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::Integer;
let a = Integer::from(100);
let b = Integer::from(125);
let r = a.gcd_ref(&b);
// gcd of 100, 125 is 25
assert_eq!(Integer::from(r), 25);

Finds the greatest common divisor.

The result is always positive except when both inputs are zero.

The following are implemented with the returned incomplete-computation value as Src:

The last item above is useful to obtain the result as a u32 if it fits. If other > 0 , the result always fits. If the result does not fit, it is equal to the absolute value of self.

Examples
use rug::Integer;
let i = Integer::from(100);
let r = i.gcd_u_ref(125);
// gcd of 100, 125 is 25
assert_eq!(Integer::from(r), 25);
let r = i.gcd_u_ref(125);
assert_eq!(Option::<u32>::from(r), Some(25));

Finds the greatest common divisor (GCD) of the two inputs (self and other), and two cofactors to obtain the GCD from the two inputs.

The following are implemented with the returned incomplete-computation value as Src:

In the case that only one of the two cofactors is required, the following are also implemented:

The GCD is always positive except when both inputs are zero. If the inputs are a and b, then the GCD is g and the cofactors are s and t such that

a × s + b × t = g

The values s and t are chosen such that normally, |s| < |b| / (2g) and |t| < |a| / (2g), and these relations define s and t uniquely. There are a few exceptional cases:

  • If |a| = |b|, then s = 0, t = sgn(b).
  • Otherwise, if b = 0 or |b| = 2g, then s = sgn(a), and if a = 0 or |a| = 2g, then t = sgn(b).
Examples
use rug::{Assign, Integer};
let a = Integer::from(4);
let b = Integer::from(6);
let r = a.gcd_cofactors_ref(&b);
let mut g = Integer::new();
let mut s = Integer::new();
let mut t = Integer::new();
(&mut g, &mut s, &mut t).assign(r);
assert_eq!(a, 4);
assert_eq!(b, 6);
assert_eq!(g, 2);
assert_eq!(s, -1);
assert_eq!(t, 1);

In the case that only one of the two cofactors is required, this can be achieved as follows:

use rug::{Assign, Integer};
let a = Integer::from(4);
let b = Integer::from(6);

// no t required
let (mut g1, mut s1) = (Integer::new(), Integer::new());
(&mut g1, &mut s1).assign(a.gcd_cofactors_ref(&b));
assert_eq!(g1, 2);
assert_eq!(s1, -1);

// no s required
let (mut g2, mut t2) = (Integer::new(), Integer::new());
(&mut g2, &mut t2).assign(b.gcd_cofactors_ref(&a));
assert_eq!(g2, 2);
assert_eq!(t2, 1);

Finds the least common multiple.

The result is always positive except when one or both inputs are zero.

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::Integer;
let a = Integer::from(100);
let b = Integer::from(125);
let r = a.lcm_ref(&b);
// lcm of 100, 125 is 500
assert_eq!(Integer::from(r), 500);

Finds the least common multiple.

The result is always positive except when one or both inputs are zero.

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::Integer;
let i = Integer::from(100);
let r = i.lcm_u_ref(125);
// lcm of 100, 125 is 500
assert_eq!(Integer::from(r), 500);

Calculates the Jacobi symbol (self/n).

Examples
use rug::{Assign, Integer};
let m = Integer::from(10);
let mut n = Integer::from(13);
assert_eq!(m.jacobi(&n), 1);
n.assign(15);
assert_eq!(m.jacobi(&n), 0);
n.assign(17);
assert_eq!(m.jacobi(&n), -1);

Calculates the Legendre symbol (self/p).

Examples
use rug::{Assign, Integer};
let a = Integer::from(5);
let mut p = Integer::from(7);
assert_eq!(a.legendre(&p), -1);
p.assign(11);
assert_eq!(a.legendre(&p), 1);

Calculates the Jacobi symbol (self/n) with the Kronecker extension.

Examples
use rug::{Assign, Integer};
let k = Integer::from(3);
let mut n = Integer::from(16);
assert_eq!(k.kronecker(&n), 1);
n.assign(17);
assert_eq!(k.kronecker(&n), -1);
n.assign(18);
assert_eq!(k.kronecker(&n), 0);

Removes all occurrences of factor, and counts the number of occurrences removed.

Examples
use rug::{Assign, Integer};
let mut i = Integer::from(Integer::u_pow_u(13, 50));
i *= 1000;
let factor = Integer::from(13);
let r = i.remove_factor_ref(&factor);
let (mut j, mut count) = (Integer::new(), 0);
(&mut j, &mut count).assign(r);
assert_eq!(count, 50);
assert_eq!(j, 1000);

Computes the binomial coefficient over k.

The following are implemented with the returned incomplete-computation value as Src:

Examples
use rug::{Complete, Integer};
// 7 choose 2 is 21
let i = Integer::from(7);
assert_eq!(i.binomial_ref(2).complete(), 21);

Generates a non-negative random number below the given boundary value.

The following are implemented with the returned incomplete-computation value as Src:

Panics

Panics if the boundary value is less than or equal to zero.

Examples
use rug::{rand::RandState, Integer};
let mut rand = RandState::new();
let bound = Integer::from(15);
let i = Integer::from(bound.random_below_ref(&mut rand));
println!("0 ≤ {} < {}", i, bound);
assert!(i < bound);

Trait Implementations

Formats the value using the given formatter. Read more

The resulting type after dereferencing.

Dereferences the value.

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Casts the value.

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Casts the value.

Casts the value.

Casts the value.

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Casts the value.

OverflowingCasts the value.

Casts the value.

Casts the value.

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.

Casts the value.

UnwrappedCasts the value.

Casts the value.

WrappingCasts the value.