1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
use super::overall_structure::WriteBytes;
use std::io::Read;
/// This files shall only contain the types as listed in the DDSI-RTPS Version 2.5
/// Table 8.13 - Types used to define RTPS messages
type Octet = u8;
type Long = i32;
type UnsignedLong = u32;
type Short = i16;
/// ProtocolId_t
/// Enumeration used to identify the protocol.
/// The following values are reserved by the protocol: PROTOCOL_RTPS
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
#[allow(non_camel_case_types)]
pub enum ProtocolId {
PROTOCOL_RTPS,
}
impl WriteBytes for ProtocolId {
fn write_bytes(&self, buf: &mut [u8]) -> usize {
b"RTPS".as_slice().read(buf).unwrap()
}
}
/// SubmessageFlag
/// Type used to specify a Submessage flag.
/// A Submessage flag takes a boolean value and affects the parsing of the Submessage by the receiver.
pub type SubmessageFlag = bool;
impl WriteBytes for [SubmessageFlag; 8] {
fn write_bytes(&self, buf: &mut [u8]) -> usize {
let mut flags = 0b_0000_0000_u8;
for (i, &item) in self.iter().enumerate() {
if item {
flags |= 0b_0000_0001 << i
}
}
buf[0] = flags;
1
}
}
/// SubmessageKind
/// Enumeration used to identify the kind of Submessage.
/// The following values are reserved by this version of the protocol:
/// DATA, GAP, HEARTBEAT, ACKNACK, PAD, INFO_TS, INFO_REPLY, INFO_DST, INFO_SRC, DATA_FRAG, NACK_FRAG, HEARTBEAT_FRAG
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
#[allow(non_camel_case_types)]
#[allow(clippy::upper_case_acronyms)]
pub enum SubmessageKind {
DATA,
GAP,
HEARTBEAT,
ACKNACK,
PAD,
INFO_TS,
INFO_REPLY,
INFO_DST,
INFO_SRC,
DATA_FRAG,
NACK_FRAG,
HEARTBEAT_FRAG,
}
pub const DATA: u8 = 0x15;
pub const GAP: u8 = 0x08;
pub const HEARTBEAT: u8 = 0x07;
pub const ACKNACK: u8 = 0x06;
pub const PAD: u8 = 0x01;
pub const INFO_TS: u8 = 0x09;
pub const INFO_REPLY: u8 = 0x0f;
pub const INFO_DST: u8 = 0x0e;
pub const INFO_SRC: u8 = 0x0c;
pub const DATA_FRAG: u8 = 0x16;
pub const NACK_FRAG: u8 = 0x12;
pub const HEARTBEAT_FRAG: u8 = 0x13;
impl WriteBytes for SubmessageKind {
fn write_bytes(&self, buf: &mut [u8]) -> usize {
buf[0] = match self {
SubmessageKind::DATA => DATA,
SubmessageKind::GAP => GAP,
SubmessageKind::HEARTBEAT => HEARTBEAT,
SubmessageKind::ACKNACK => ACKNACK,
SubmessageKind::PAD => PAD,
SubmessageKind::INFO_TS => INFO_TS,
SubmessageKind::INFO_REPLY => INFO_REPLY,
SubmessageKind::INFO_DST => INFO_DST,
SubmessageKind::INFO_SRC => INFO_SRC,
SubmessageKind::DATA_FRAG => DATA_FRAG,
SubmessageKind::NACK_FRAG => NACK_FRAG,
SubmessageKind::HEARTBEAT_FRAG => HEARTBEAT_FRAG,
};
1
}
}
/// Time_t
/// Type used to hold a timestamp.
/// Should have at least nano-second resolution.
/// The following values are reserved by the protocol:
/// TIME_ZERO, TIME_INVALID, TIME_INFINITE
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct Time {
seconds: UnsignedLong,
fraction: UnsignedLong,
}
impl Time {
pub const fn new(seconds: UnsignedLong, fraction: UnsignedLong) -> Self {
Self { seconds, fraction }
}
pub fn seconds(&self) -> UnsignedLong {
self.seconds
}
pub fn fraction(&self) -> UnsignedLong {
self.fraction
}
}
#[allow(dead_code)]
pub const TIME_ZERO: Time = Time::new(0, 0);
pub const TIME_INVALID: Time = Time::new(0xffffffff, 0xffffffff);
#[allow(dead_code)]
pub const TIME_INFINITE: Time = Time::new(0xffffffff, 0xfffffffe);
impl WriteBytes for Time {
fn write_bytes(&self, buf: &mut [u8]) -> usize {
self.seconds.write_bytes(&mut buf[0..]) + self.fraction.write_bytes(&mut buf[4..])
}
}
/// Count_t
/// Type used to hold a count that is incremented monotonically, used to identify message duplicates.
pub type Count = Long;
/// Checksum_t
/// Type used to hold a checksum. Used to detect RTPS message corruption by the underlying transport.
/// The following values are reserved by the protocol: CHECKSUM_INVALID.
#[allow(dead_code)]
pub type Checksum32 = [Octet; 4];
/// MessageLength_t
/// Type used to hold the length of an RTPS Message.
/// The following values are reserved by the protocol: MESSAGE_LENGTH_INVALID
#[allow(dead_code)]
struct MessageLength;
/// ParameterId_t
/// Type used to uniquely identify a parameter in a parameter list.
/// Used extensively by the Discovery Module mainly to define QoS Parameters. A range of values is reserved for protocol-defined parameters, while another range can be used for vendor-defined parameters, see 8.3.5.9.
pub type ParameterId = Short;
/// FragmentNumber_t
/// Type used to hold fragment numbers.
/// Must be possible to represent using 32 bits.
pub type FragmentNumber = UnsignedLong;
/// GroupDigest_t
/// Type used to hold a digest value that uniquely identifies a group of Entities belonging to the same Participant.
#[allow(dead_code)]
pub type GroupDigest = [Octet; 4];
/// UExtension4_t
/// Type used to hold an undefined 4-byte value. It is intended to be used in future revisions of the specification.
#[allow(dead_code)]
pub type UExtension4 = [Octet; 4];
/// WExtension8_t
/// Type used to hold an undefined 8-byte value. It is intended to be used in future revisions of the specification.
#[allow(dead_code)]
pub type WExtension8 = [Octet; 8];