1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
use std::borrow::Cow;
use std::marker::PhantomData;
use std::ops::Range;
/// Trait for backing storage used by tensors and views.
///
/// Mutable tensors have storage which also implement [StorageMut].
///
/// This specifies a contiguous array of elements in memory, as a pointer and a
/// length. The storage may be owned or borrowed. For borrowed storage, there
/// may be other storage whose ranges overlap. This is necessary to support
/// mutable views of non-contiguous tensors (eg. independent columns of a
/// matrix, whose data is stored in row-major order).
///
/// # Safety
///
/// Since different storage objects can have memory ranges that overlap, it is
/// up to the caller to ensure that mutable tensors cannot logically overlap any
/// other tensors. In other words, whenever a mutable tensor is split or sliced
/// or iterated, it should not be possible to get duplicate mutable references
/// to the same elements from those views.
///
/// Implementations of this trait must ensure that the
/// [`as_ptr`](Storage::as_ptr) and [`len`](Storage::len) methods define a valid
/// range of memory within the same allocated object, which is correctly aligned
/// for the `Elem` type. For the case where the storage is contiguous, these
/// requirements are the same as
/// [`slice::from_raw_parts`](std::slice::from_raw_parts).
///
/// The [`MUTABLE`](Storage::MUTABLE) associated const must be true if the
/// storage also implements [`StorageMut`].
pub unsafe trait Storage {
/// The element type.
type Elem;
/// True if this storage allows mutable access via [`StorageMut`]. This is
/// used to determine if a layout can be safely used with a storage.
/// Layouts where multiple indices map to the same offset must not be used
/// with mutable storage.
const MUTABLE: bool;
/// Return the number of elements in the storage.
fn len(&self) -> usize;
/// Return true if the storage contains no elements.
fn is_empty(&self) -> bool {
self.len() == 0
}
/// Return a pointer to the first element in the storage.
fn as_ptr(&self) -> *const Self::Elem;
/// Return the element at a given offset, or None if `offset >= self.len()`.
///
/// # Safety
///
/// - The caller must ensure that no mutable references to the same element
/// can be created.
unsafe fn get(&self, offset: usize) -> Option<&Self::Elem> {
if offset < self.len() {
Some(&*self.as_ptr().add(offset))
} else {
None
}
}
/// Return a reference to the element at `offset`.
///
/// # Safety
///
/// This has the same safety requirements as [`get`](Storage::get) plus
/// the caller must ensure that `offset < len`.
unsafe fn get_unchecked(&self, offset: usize) -> &Self::Elem {
debug_assert!(offset < self.len());
&*self.as_ptr().add(offset)
}
/// Return a view of a sub-region of the storage.
///
/// Panics if the range is out of bounds.
fn slice(&self, range: Range<usize>) -> ViewData<Self::Elem> {
assert_storage_range_valid(self, range.clone());
ViewData {
// Safety: We verified that `range` is in bounds.
ptr: unsafe { self.as_ptr().add(range.start) },
len: range.len(),
_marker: PhantomData,
}
}
/// Return an immutable view of this storage.
fn view(&self) -> ViewData<Self::Elem> {
self.slice(0..self.len())
}
/// Return the contents of the storage as a slice.
///
/// # Safety
///
/// The caller must ensure that no mutable references exist to any element
/// in the storage.
unsafe fn as_slice(&self) -> &[Self::Elem] {
std::slice::from_raw_parts(self.as_ptr(), self.len())
}
}
/// Trait for converting owned and borrowed element containers (`Vec<T>`, slices)
/// into their corresponding `Storage` type.
///
/// This is used by [`Tensor::from_data`](crate::TensorBase::from_data).
pub trait IntoStorage {
type Output: Storage;
fn into_storage(self) -> Self::Output;
}
impl<T: Storage> IntoStorage for T {
type Output = Self;
fn into_storage(self) -> Self {
self
}
}
impl<'a, T> IntoStorage for &'a [T] {
type Output = ViewData<'a, T>;
fn into_storage(self) -> ViewData<'a, T> {
ViewData {
ptr: self.as_ptr(),
len: self.len(),
_marker: PhantomData,
}
}
}
impl<'a, T, const N: usize> IntoStorage for &'a [T; N] {
type Output = ViewData<'a, T>;
fn into_storage(self) -> ViewData<'a, T> {
self.as_slice().into_storage()
}
}
impl<'a, T> IntoStorage for &'a mut [T] {
type Output = ViewMutData<'a, T>;
fn into_storage(self) -> ViewMutData<'a, T> {
ViewMutData {
ptr: self.as_mut_ptr(),
len: self.len(),
_marker: PhantomData,
}
}
}
/// Panic if an offset range is out of bounds for a given storage.
fn assert_storage_range_valid<S: Storage + ?Sized>(storage: &S, range: Range<usize>) {
assert!(
range.start <= storage.len() && range.end <= storage.len(),
"invalid slice range {:?} for storage length {}",
range,
storage.len()
);
}
/// Trait for backing storage used by mutable tensors and views.
///
/// This extends [Storage] with methods to get mutable pointers and references
/// to elements in the storage.
///
/// # Safety
///
/// The [`as_mut_ptr`](StorageMut::as_mut_ptr) method has the same safety
/// requirements as [`Storage::as_ptr`]. The result of `as_mut_ptr` must also
/// be equal to `as_ptr`.
pub unsafe trait StorageMut: Storage {
/// Return a mutable pointer to the first element in storage.
fn as_mut_ptr(&mut self) -> *mut Self::Elem;
/// Mutable version of [Storage::get].
///
/// # Safety
///
/// This has the same safety requirements as [`get`](Storage::get).
unsafe fn get_mut(&mut self, offset: usize) -> Option<&mut Self::Elem> {
if offset < self.len() {
Some(&mut *self.as_mut_ptr().add(offset))
} else {
None
}
}
/// Mutable version of [Storage::get_unchecked].
///
/// # Safety
///
/// This has the same requirement as [`get_mut`](StorageMut::get_mut) plus
/// the caller must ensure that `offset < self.len()`.
unsafe fn get_unchecked_mut(&mut self, offset: usize) -> &mut Self::Elem {
debug_assert!(offset < self.len());
&mut *self.as_mut_ptr().add(offset)
}
/// Return a slice of this storage.
fn slice_mut(&mut self, range: Range<usize>) -> ViewMutData<Self::Elem> {
assert_storage_range_valid(self, range.clone());
ViewMutData {
// Safety: We verified that `range` is in bounds.
ptr: unsafe { self.as_mut_ptr().add(range.start) },
len: range.len(),
_marker: PhantomData,
}
}
/// Return a mutable view of this storage.
fn view_mut(&mut self) -> ViewMutData<Self::Elem> {
self.slice_mut(0..self.len())
}
/// Return the stored elements as a mutable slice.
///
/// # Safety
///
/// The caller must ensure that the storage is contiguous (ie. no unused
/// elements) and that there are no other references to any elements in the
/// storage.
unsafe fn as_slice_mut(&mut self) -> &mut [Self::Elem] {
std::slice::from_raw_parts_mut(self.as_mut_ptr(), self.len())
}
}
unsafe impl<T> Storage for Vec<T> {
type Elem = T;
const MUTABLE: bool = true;
fn len(&self) -> usize {
self.len()
}
fn as_ptr(&self) -> *const T {
self.as_ptr()
}
}
unsafe impl<T> StorageMut for Vec<T> {
fn as_mut_ptr(&mut self) -> *mut T {
self.as_mut_ptr()
}
}
/// Storage for an immutable tensor view.
///
/// This has the same representation in memory as a slice: a pointer and a
/// length. Unlike a slice it allows for other mutable storage to reference
/// memory ranges that overlap with this one. It is up to APIs built on top of
/// this to ensure uniqueness of mutable element references.
#[derive(Debug)]
pub struct ViewData<'a, T> {
ptr: *const T,
len: usize,
_marker: PhantomData<&'a T>,
}
// Safety: `ViewData` does not provide mutable access to its elements, so it
// is `Send` and `Sync`.
unsafe impl<'a, T> Send for ViewData<'a, T> {}
unsafe impl<'a, T> Sync for ViewData<'a, T> {}
impl<'a, T> Clone for ViewData<'a, T> {
fn clone(&self) -> Self {
*self
}
}
impl<'a, T> Copy for ViewData<'a, T> {}
impl<'a, T> ViewData<'a, T> {
/// Variant of [Storage::get] which preserves lifetimes.
///
/// # Safety
///
/// See [Storage::get].
pub unsafe fn get(&self, offset: usize) -> Option<&'a T> {
if offset < self.len {
Some(unsafe { &*self.ptr.add(offset) })
} else {
None
}
}
/// Variant of [Storage::get_unchecked] which preserves lifetimes.
///
/// # Safety
///
/// See [Storage::get_unchecked].
pub unsafe fn get_unchecked(&self, offset: usize) -> &'a T {
debug_assert!(offset < self.len);
&*self.ptr.add(offset)
}
/// Variant of [Storage::slice] which preserves lifetimes.
pub fn slice(&self, range: Range<usize>) -> ViewData<'a, T> {
assert_storage_range_valid(self, range.clone());
ViewData {
// Safety: `range.start < range.end` and `range.end <= self.len())`,
// so this is in-bounds.
ptr: unsafe { self.as_ptr().add(range.start) },
len: range.len(),
_marker: PhantomData,
}
}
/// Variant of [Storage::view] which preserves lifetimes.
pub fn view(&self) -> ViewData<'a, T> {
self.slice(0..self.len())
}
/// Return the contents of the storage as a slice.
///
/// # Safety
///
/// The caller must ensure that no mutable references exist to any element
/// in the storage.
pub unsafe fn as_slice(&self) -> &'a [T] {
std::slice::from_raw_parts(self.ptr, self.len)
}
}
unsafe impl<'a, T> Storage for ViewData<'a, T> {
type Elem = T;
const MUTABLE: bool = false;
fn len(&self) -> usize {
self.len
}
fn as_ptr(&self) -> *const T {
self.ptr
}
}
/// Storage for a mutable tensor view.
///
/// This has the same representation in memory as a mutable slice: a pointer
/// and a length. Unlike a slice it allows for other storage objects to
/// reference memory ranges that overlap with this one. It is up to
/// APIs built on top of this to ensure uniqueness of mutable references.
#[derive(Debug)]
pub struct ViewMutData<'a, T> {
ptr: *mut T,
len: usize,
_marker: PhantomData<&'a mut T>,
}
unsafe impl<'a, T> Send for ViewMutData<'a, T> {}
impl<'a, T> ViewMutData<'a, T> {
/// Variant of [StorageMut::as_slice_mut] which preserves the underlying
/// lifetime in the result.
///
/// # Safety
///
/// See [StorageMut::as_slice_mut].
pub unsafe fn to_slice_mut(mut self) -> &'a mut [T] {
std::slice::from_raw_parts_mut(self.as_mut_ptr(), self.len())
}
/// Split the storage into two sub-views.
///
/// Unlike splitting a slice, this does *not* ensure that the two halves
/// do not overlap, only that the "left" and "right" ranges are valid.
pub fn split_mut(
self,
left: Range<usize>,
right: Range<usize>,
) -> (ViewMutData<'a, T>, ViewMutData<'a, T>) {
assert_storage_range_valid(&self, left.clone());
assert_storage_range_valid(&self, right.clone());
let left = ViewMutData {
ptr: unsafe { self.ptr.add(left.start) },
len: left.len(),
_marker: PhantomData,
};
let right = ViewMutData {
ptr: unsafe { self.ptr.add(right.start) },
len: right.len(),
_marker: PhantomData,
};
(left, right)
}
}
unsafe impl<'a, T> Storage for ViewMutData<'a, T> {
type Elem = T;
const MUTABLE: bool = true;
fn len(&self) -> usize {
self.len
}
fn as_ptr(&self) -> *const T {
self.ptr
}
}
unsafe impl<'a, T> StorageMut for ViewMutData<'a, T> {
fn as_mut_ptr(&mut self) -> *mut T {
self.ptr
}
}
/// Tensor storage which may be either owned or borrowed.
///
/// The name is taken from [std::borrow::Cow] in the standard library,
/// which is conceptually similar.
pub enum CowData<'a, T> {
/// A [CowData] that owns its data.
Owned(Vec<T>),
/// A [CowData] that borrows data.
Borrowed(ViewData<'a, T>),
}
unsafe impl<'a, T> Storage for CowData<'a, T> {
type Elem = T;
const MUTABLE: bool = false;
fn len(&self) -> usize {
match self {
CowData::Owned(vec) => vec.len(),
CowData::Borrowed(view) => view.len(),
}
}
fn as_ptr(&self) -> *const T {
match self {
CowData::Owned(vec) => vec.as_ptr(),
CowData::Borrowed(view) => view.as_ptr(),
}
}
}
impl<'a, T> IntoStorage for Cow<'a, [T]>
where
[T]: ToOwned<Owned = Vec<T>>,
{
type Output = CowData<'a, T>;
fn into_storage(self) -> Self::Output {
match self {
Cow::Owned(vec) => CowData::Owned(vec),
Cow::Borrowed(slice) => CowData::Borrowed(slice.into_storage()),
}
}
}
#[cfg(test)]
mod tests {
use std::borrow::Cow;
use super::{IntoStorage, Storage, StorageMut, ViewData, ViewMutData};
fn test_storage_impl<S: Storage<Elem = i32>>(s: S, expected: &[i32]) {
// Test `len`, `get`.
assert_eq!(s.len(), expected.len());
for i in 0..s.len() {
assert_eq!(unsafe { s.get(i) }, expected.get(i));
}
assert_eq!(unsafe { s.get(s.len()) }, None);
// Test slicing storage.
let range = 1..s.len() - 1;
let slice = s.slice(range.clone());
assert_eq!(slice.len(), range.len());
for i in 0..slice.len() {
assert_eq!(unsafe { slice.get(i) }, expected[range.clone()].get(i));
}
// Test restoring a slice.
assert_eq!(unsafe { s.as_slice() }, expected);
}
#[test]
fn test_storage() {
let data = &mut [1, 2, 3, 4];
let owned = data.to_vec();
test_storage_impl(owned, data);
let view: ViewData<i32> = data.as_slice().into_storage();
test_storage_impl(view, data);
let cow_view = Cow::Borrowed(data.as_slice()).into_storage();
test_storage_impl(cow_view, data);
let mut_view: ViewMutData<i32> = data.as_mut_slice().into_storage();
test_storage_impl(mut_view, &[1, 2, 3, 4]);
}
#[test]
#[should_panic(expected = "invalid slice range 5..2 for storage length 4")]
fn test_storage_slice_invalid_start() {
let data = vec![1, 2, 3, 4];
Storage::slice(&data, 5..2);
}
#[test]
#[should_panic(expected = "invalid slice range 2..5 for storage length 4")]
fn test_storage_slice_invalid_end() {
let data = vec![1, 2, 3, 4];
Storage::slice(&data, 2..5);
}
#[test]
#[should_panic(expected = "invalid slice range 5..2 for storage length 4")]
fn test_storage_slice_mut_invalid_start() {
let mut data = vec![1, 2, 3, 4];
StorageMut::slice_mut(&mut data, 5..2);
}
#[test]
#[should_panic(expected = "invalid slice range 2..5 for storage length 4")]
fn test_storage_slice_mut_invalid_end() {
let mut data = vec![1, 2, 3, 4];
StorageMut::slice_mut(&mut data, 2..5);
}
}