1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
use crate::{re_error, sumn, RError, Stats, TriangMat, Vecg, RE}; // MStats, MinMax, MutVecg, Stats, VecVec };
pub use indxvec::{printing::*, Printing, Vecops};

/// Meanings of 'kind' field. Note that 'Upper Symmetric' would represent the same full matrix as
/// 'Lower Symmetric', so it is not used (lower symmetric matrix is never transposed)
const KINDS: [&str; 5] = [
    "Lower",
    "Lower antisymmetric",
    "Lower symmetric",
    "Upper",
    "Upper antisymmetric",
];

/// Display implementation for TriangMat
impl std::fmt::Display for TriangMat {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        let dim = Self::dim(self);
        write!(
            f,
            "{YL}{} ({dim}x{dim}) triangular matrix:\n{}",
            KINDS[self.kind],
            self.to_triangle().gr()
        )
    }
}

/// Implementation of associated functions for struct TriangleMat.
/// End type is f64, as triangular matrices will be mostly computed
impl TriangMat {
    /// Length of the data vec
    pub fn len(&self) -> usize {
        self.data.len()
    }
    /// Dimension of the implied full (square) matrix
    /// from the quadratic equation: `n^2 + n - 2l = 0`
    pub fn dim(&self) -> usize {
        ((((8 * self.data.len() + 1) as f64).sqrt() - 1.) / 2.) as usize
    }
    /// Empty TriangMat test
    pub fn is_empty(&self) -> bool {
        self.data.is_empty()
    }
    /// Square matrix dimension (rows)
    pub fn rows(&self) -> usize {
        Self::rowcol(self.len()).0
    }
    /// Squared euclidian vector magnitude (norm) of the data vector
    pub fn magsq(&self) -> f64 {
        self.data.vmagsq()
    }
    /// Sum of the elements:  
    /// when applied to the wedge product **a∧b**, returns det(**a,b**)
    pub fn sum(&self) -> f64 {
        self.data.iter().sum()
    }
    /// Diagonal elements
    pub fn diagonal(&self) -> Vec<f64> {
        let mut next = 0_usize;
        let mut skip = 1;
        self.data
            .iter()
            .enumerate()
            .filter_map(|(i, &x)| {
                if i == next {
                    skip += 1;
                    next = i + skip;
                    Some(x)
                } else {
                    None
                }
            })
            .collect::<Vec<f64>>()
    }
    /// Generates new unit (symmetric) TriangMat matrix of size (n+1)*n/2
    pub fn unit(n: usize) -> Self {
        let mut data = Vec::new();
        for i in 0..n {
            // fill with zeros before the diagonal
            for _ in 0..i {
                data.push(0_f64)
            }
            data.push(1_f64);
        }
        TriangMat { kind: 2, data }
    }
    /// Eigenvalues (obtainable only from Cholesky L matrix)
    pub fn eigenvalues(&self) -> Vec<f64> {
        self.diagonal().iter().map(|&x| x * x).collect::<Vec<f64>>()
    }
    /// Determinant (obtainable only from Cholesky L matrix)
    pub fn determinant(&self) -> f64 {
        self.diagonal().iter().map(|&x| x * x).product()
    }

    /// Translates subscripts to a 1d vector, i.e. natural numbers, to a pair of
    /// (row,column) coordinates within a lower/upper triangular matrix.
    /// Enables memory efficient representation of triangular matrices as one flat vector.
    pub fn rowcol(s: usize) -> (usize, usize) {
        let row = ((((8 * s + 1) as f64).sqrt() - 1.) / 2.) as usize; // cast truncates, like .floor()
        let column = s - row * (row + 1) / 2; // subtracting the last triangular number (of whole rows)
        (row, column)
    }

    /// Extract one row from TriangMat
    pub fn row(&self, r: usize) -> Vec<f64> {
        let idx = sumn(r);
        self.data.get(idx..idx + r + 1).unwrap().to_vec()
    }

    /// Unpacks flat TriangMat Vec to triangular Vec<Vec> form
    pub fn to_triangle(&self) -> Vec<Vec<f64>> {
        let (n, _) = TriangMat::rowcol(self.data.len());
        let mut res = Vec::with_capacity(n);
        for r in 0..n {
            res.push(self.row(r));
        }
        res
    }

    /// TriangMat trivial implicit transposition
    pub fn transpose(&mut self) {
        if self.kind != 2 {
            self.kind += 3;
            self.kind %= 6;
        }
    }

    /// Unpacks TriangMat to ordinary full matrix
    pub fn to_full(&self) -> Vec<Vec<f64>> {
        // full matrix dimension(s)
        let (n, _) = TriangMat::rowcol(self.data.len());
        let mut res = vec![vec!(0_f64; n); n];
        // function pointer for primitive filling actions, depending on the matrix kind
        let fill: fn(usize, usize, &mut Vec<Vec<f64>>, f64) = match self.kind % 3 {
            2 => |row: usize, col: usize, res: &mut Vec<Vec<f64>>, item: f64| {
                res[row][col] = item;
                if row != col {
                    res[col][row] = item;
                };
            },
            1 => |row: usize, col: usize, res: &mut Vec<Vec<f64>>, item: f64| {
                res[row][col] = item;
                if row != col {
                    res[col][row] = -item;
                };
            },
            _ => |row: usize, col: usize, res: &mut Vec<Vec<f64>>, item: f64| {
                res[row][col] = item;
                if row != col {
                    res[col][row] = 0_f64;
                };
            },
        };
        if self.kind > 2 {
            // is transposed
            for (i, &item) in self.data.iter().enumerate() {
                let (row, col) = Self::rowcol(i);
                fill(col, row, &mut res, item);
            }
        } else {
            for (i, &item) in self.data.iter().enumerate() {
                let (row, col) = Self::rowcol(i);
                fill(row, col, &mut res, item);
            }
        };
        res
    }

    /// Efficient Cholesky-Banachiewicz matrix decomposition into `LL'`,
    /// where L is the returned lower triangular matrix and L' its upper triangular transpose.
    /// Expects as input a symmetric positive definite matrix
    /// in TriangMat compact form, such as a covariance matrix produced by `covar`.
    /// The computations are all done on the compact form,
    /// making this implementation memory efficient for large (symmetric) matrices.
    /// Reports errors if the above conditions are not satisfied.
    pub fn cholesky(&self) -> Result<Self, RE> {
        let sl = self.data.len();
        // input not long enough to compute anything
        if sl < 3 {
            return re_error("empty", "cholesky needs at least 3x3 TriangMat: {self}")?;
        };
        // n is the dimension of the implied square matrix.
        // Not needed as an extra argument. We compute it
        // by solving a quadratic equation in seqtosubs()
        let (n, c) = TriangMat::rowcol(sl);
        // input is not a triangular number, is of wrong size
        if c != 0 {
            return re_error("size", "cholesky needs a triangular matrix")?;
        };
        let mut res = vec![0.0; sl]; // result L is of the same size as the input
        for i in 0..n {
            let isub = i * (i + 1) / 2; // matrix row index to the compact vector index
            for j in 0..(i + 1) {
                // i+1 to include the diagonal
                let jsub = j * (j + 1) / 2; // matrix column index to the compact vector index
                let mut sum = 0.0;
                for k in 0..j {
                    sum += res[isub + k] * res[jsub + k];
                }
                let dif = self.data[isub + j] - sum;
                res[isub + j] = if i == j {
                    // diagonal elements
                    // dif <= 0 means that the input matrix is not positive definite,
                    // or is ill-conditioned, so we return ArithError
                    if dif <= 0_f64 {
                        return re_error("arith", "cholesky matrix is not positive definite")?;
                    };
                    dif.sqrt()
                }
                // passed, so enter real non-zero square root
                else {
                    dif / res[jsub + j]
                };
            }
        }
        Ok(TriangMat { kind: 0, data: res })
    }

    /// Mahalanobis scaled magnitude m(d) of a (column) vector d.
    /// Self is a decomposed lower triangular matrix L, as returned by `cholesky`
    /// from covariance/comediance positive definite matrix C = LL'.
    /// `m(d) = sqrt(d'inv(C)d) = sqrt(d'inv(LL')d) = sqrt(d'inv(L')inv(L)d)`,
    /// where ' denotes transpose and `inv()` denotes inverse.
    /// Putting Lx = d and solving for x by forward substitution, we obtain `x = inv(L)d`
    /// substituting x into the above: `=> m(d) = sqrt(x'x) = |x|.
    /// We stay in the compact triangular form all the way from C to m(d).
    pub fn mahalanobis<U>(&self, d: &[U]) -> Result<f64, RE>
    where
        U: Copy + PartialOrd + std::fmt::Display,
        f64: From<U>,
    {
        Ok(self.forward_substitute(d)?.vmag())
    }

    /// Solves for x the system of linear equations Lx = b,
    /// where L (self) is a lower triangular matrix.   
    fn forward_substitute<U>(&self, b: &[U]) -> Result<Vec<f64>, RE>
    where
        U: Copy + PartialOrd + std::fmt::Display,
        f64: From<U>,
    {
        let sl = self.data.len();
        if sl < 3 {
            return Err(RError::NoDataError(
                "forward-substitute needs at least three items".to_owned(),
            ));
        };
        // 2d matrix dimensions
        let (n, c) = TriangMat::rowcol(sl);
        if c != 0 {
            return Err(RError::DataError(
                "forward_substitute needs a triangular matrix".to_owned(),
            ));
        };
        // dimensions/lengths mismatch
        if n != b.len() {
            return Err(RError::DataError(
                "forward_substitute mismatch of self and b dimension".to_owned(),
            ));
        };
        let mut res: Vec<f64> = Vec::with_capacity(n); // result of the same size and shape as b
        res.push(f64::from(b[0]) / self.data[0]);
        for (row, &bitem) in b.iter().enumerate().take(n).skip(1) {
            let mut sumtodiag = 0_f64;
            let rowoffset = sumn(row);
            for (column, resc) in res.iter().enumerate().take(row) {
                sumtodiag += self.data[rowoffset + column] * resc;
            }
            res.push((f64::from(bitem) - sumtodiag) / self.data[rowoffset + row]);
        }
        Ok(res)
    }

    /// Householder's Q*M matrix product without explicitly computing Q
    pub fn house_uapply<T>(&self, m: &[Vec<T>]) -> Vec<Vec<f64>>
    where
        T: Copy + PartialOrd + std::fmt::Display,
        f64: From<T>,
    {
        let u = self.to_full();
        let mut qm = m.iter().map(|mvec| mvec.tof64()).collect::<Vec<Vec<f64>>>();
        for uvec in u.iter().take(self.rows()) {
            qm.iter_mut()
                .for_each(|qvec| *qvec = uvec.house_reflect::<f64>(qvec))
        }
        qm
    }

    /* Leftmultiply (column) vector v by upper triangular matrix self
    fn utriangmultv<U>(self,v: &[U]) -> Result<Vec<f64>,RE>
        where U: Copy+PartialOrd+std::fmt::Display, f64:From<U> {
        let sl = self.data.len();
        if sl < 1 { return Err(RError::NoDataError("utriangmultv needs at least one item"));};
        // 2d matrix dimensions
        let (n,c) = TriangMat::rowcol(sl);
        if c != sl { return Err(RError::DataError("utriangmultv expects a triangular matrix"));};
        if n != v.len() { return Err(RError::DataError("utriangmultv dimensions mismatch")); };
        let mut res:Vec<f64> = vec![0_f64;n];
        for row in 0..n {
            for j in row..n {
                res[row] += self.data[sumn(row)+j]*f64::from(v[j])
            };
        };
        Ok(res)
    }
    */
}