1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
//! A generalised implementation of the multivariate Normal distribution.
#![allow(non_snake_case)]
use crate::{
    params::{
        Param, constraints::{
            self, Constraint, Constraints,
            UnsatisfiedConstraintError as UCE,
        }
    },
    linalg::{Vector, Matrix},
};

pub use crate::params::Loc;

/// Covariance matrix parameter \\(\\bm{\\Sigma}\\).
#[derive(Debug, Clone, Copy)]
#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_crate")
)]
pub struct Covariance<S>(pub S);

/// Dense covariance matrix parameter \\(\\bm{\\Sigma}\\).
pub type MatrixCovariance = Covariance<Matrix<f64>>;

impl MatrixCovariance {
    /// Construct an \\(n\\)-dimensional covariance matrix parameter \\(\\bm{\\Sigma}\\).
    ///
    /// # Arguments
    /// * `Sigma` - the covariance matrix \\(\\bm{\\Sigma}\\).
    ///
    /// # Constraints
    /// 1. The covariance matrix is square.
    /// 2. The covariance matrix is positive semi-definite.
    pub fn matrix(Sigma: Matrix<f64>) -> Result<Self, failure::Error> {
        let c = constraints::And((constraints::Square, constraints::All(constraints::Positive)));

        Ok(Covariance(c.check(Sigma)?))
    }
}

impl Param for MatrixCovariance {
    type Value = Matrix<f64>;

    fn value(&self) -> &Self::Value { &self.0 }

    fn into_value(self) -> Self::Value { self.0 }

    fn constraints() -> Constraints<Self::Value> {
        let c = constraints::All(constraints::Positive);

        vec![Box::new(c)]
    }
}

/// Diagonal covariance matrix parameter \\(\\mathrm{diag}(\\sigma_1^2, \\ldots, \\sigma_n^2)\\).
pub type DiagonalCovariance = Covariance<Vector<f64>>;

impl DiagonalCovariance {
    /// Construct an \\(n\\)-dimensional diagonal covariance matrix parameter
    /// \\(\\mathrm{diag}(\\sigma_1^2, \\ldots, \\sigma_n^2)\\).
    ///
    /// # Arguments
    /// * `sigma2_diag` - the covariance matrix diagonal entries \\(\\langle\\sigma_1^2, \\ldots,
    ///     \\sigma_n^2\\rangle\\).
    ///
    /// # Constraints
    /// 1. All variance terms are positive real.
    pub fn diagonal(sigma2_diag: Vector<f64>) -> Result<Self, failure::Error> {
        let c = constraints::All(constraints::Positive);

        Ok(Covariance(c.check(sigma2_diag)?))
    }
}

impl Param for Covariance<Vector<f64>> {
    type Value = Vector<f64>;

    fn value(&self) -> &Self::Value { &self.0 }

    fn into_value(self) -> Self::Value { self.0 }

    fn constraints() -> Constraints<Self::Value> {
        let c = constraints::All(constraints::Positive);

        vec![Box::new(c)]
    }
}

/// Bivariate covariance matrix parameter with variance terms \\(\\sigma_1^2\\) and
/// \\(\\sigma_2^2\\), and correlation coefficient \\(\\rho\\).
pub type BivariateCovariance = Covariance<([f64; 2], f64)>;

impl BivariateCovariance {
    /// Construct an bivariate covariance matrix parameter with variance terms \\(\\sigma_1^2\\)
    /// and \\(\\sigma_2^2\\), and correlation coefficient \\(\\rho\\).
    ///
    /// # Arguments
    /// * `sigma_diag` - the covariance matrix diagonal entries \\(\\sigma_1^2\\) and
    ///     \\(\\sigma_2^2\\).
    /// * `rho` - the correlation coefficient \\(\\rho\\).
    ///
    /// # Constraints
    /// 1. The variance terms are positive real.
    /// 2. The correlation coefficient is in the interval \\([-1, 1]\\).
    pub fn bivariate(sigma2_diag: [f64; 2], rho: f64) -> Result<Self, failure::Error> {
        let c_sigma = constraints::All(constraints::Positive);
        let c_rho = constraints::Interval { lb: -1.0, ub: 1.0, };

        Ok(Covariance((c_sigma.check(sigma2_diag)?, c_rho.check(rho)?)))
    }
}

impl Param for BivariateCovariance {
    type Value = ([f64; 2], f64);

    fn value(&self) -> &Self::Value { &self.0 }

    fn into_value(self) -> Self::Value { self.0 }

    fn constraints() -> Constraints<Self::Value> { todo!() }
}

/// Diagonal covariance matrix parameter \\(\\mathrm{diag}(\\sigma_1^2, \\sigma_2^2)\\) in
/// 2-dimensions.
pub type PairedCovariance = Covariance<[f64; 2]>;

impl PairedCovariance {
    /// Construct a diagonal covariance matrix parameter \\(\\mathrm{diag}(\\sigma_1^2,
    /// \\sigma_2^2)\\) in 2-dimensions.
    ///
    /// # Arguments
    /// * `sigma2_diag` - the covariance matrix diagonal entries \\(\\sigma_1^2\\) and
    ///     \\(\\sigma_2^2\\).
    ///
    /// # Constraints
    /// 1. The variance terms are positive real.
    /// 2. The correlation coefficient is in the interval \\([-1, 1]\\).
    pub fn paired(sigma2_diag: [f64; 2]) -> Result<Self, failure::Error> {
        let c = constraints::All(constraints::Positive);

        Ok(Covariance(c.check(sigma2_diag)?))
    }
}

impl Param for PairedCovariance {
    type Value = [f64; 2];

    fn value(&self) -> &Self::Value { &self.0 }

    fn into_value(self) -> Self::Value { self.0 }

    fn constraints() -> Constraints<Self::Value> { todo!() }
}

/// Isotropic covariance matrix parameter \\(\\sigma^2\\bm{I}\\).
pub type IsotropicCovariance = Covariance<f64>;

impl Covariance<f64> {
    /// Construct an isotropic covariance matrix parameter \\((\\sigma^2\\bm{I}\\).
    ///
    /// # Arguments
    /// * `sigma2` - the covariance matrix diagonal entry \\(\\sigma^2\\).
    ///
    /// # Constraints
    /// 1. The variance term is positive real.
    pub fn isotropic(sigma2: f64) -> Result<Self, UCE<f64>> {
        Ok(Covariance(assert_constraint!(sigma2+)?))
    }
}

impl Param for Covariance<f64> {
    type Value = f64;

    fn value(&self) -> &Self::Value { &self.0 }

    fn into_value(self) -> Self::Value { self.0 }

    fn constraints() -> Constraints<Self::Value> { vec![Box::new(constraints::Positive)] }
}

/// Parameter set for Normal distributions.
#[derive(Debug, Clone, Copy)]
#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_crate")
)]
pub struct Params<M, S> {
    /// The mean parameter \\(\\bm{\\mu}\\).
    pub mu: Loc<M>,

    /// The covariance parameter \\(\\bm{\\Sigma}\\).
    pub Sigma: Covariance<S>,
}

/// Gradient of parameters of a Normal distribution.
#[derive(Debug, Clone, Copy)]
#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_crate")
)]
pub struct Grad<M, S> {
    /// Gradient of the mean parameter \\(\\bm{\\mu}\\).
    pub mu: M,

    /// Gradient of the covariance parameter \\(\\bm{\\Sigma}\\).
    pub Sigma: S,
}

mod univariate;
pub use self::univariate::*;

mod paired;
pub use self::paired::*;

mod bivariate;
pub use self::bivariate::*;

mod multivariate;
pub use self::multivariate::*;