1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
use crate::{
    consts::THREE_HALVES,
    params::{Scale, Shape},
    prelude::*,
};
use rand::Rng;
use spaces::real::PositiveReals;
use std::fmt;

params! {
    Params {
        lambda: Scale<f64>,
        k: Shape<f64>
    }
}

new_dist!(Weibull<Params>);

macro_rules! get_params {
    ($self:ident) => { ($self.0.lambda.0, $self.0.k.0) }
}

impl Weibull {
    fn gamma_i(&self, num: f64) -> f64 {
        use special_fun::FloatSpecial;

        (1.0 + num / self.0.k.0).gamma()
    }
}

impl Distribution for Weibull {
    type Support = PositiveReals;
    type Params = Params;

    fn support(&self) -> PositiveReals { PositiveReals }

    fn params(&self) -> Params { self.0 }

    fn cdf(&self, x: &f64) -> Probability {
        if *x >= 0.0 {
            let (lambda, k) = get_params!(self);

            Probability::new_unchecked(1.0 - (-(x / lambda).powf(k)).exp())
        } else {
            Probability::zero()
        }
    }

    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
        use rand_distr::Distribution as _;

        let (lambda, k) = get_params!(self);

        rand_distr::Weibull::new(lambda, k).unwrap().sample(rng)
    }
}

impl ContinuousDistribution for Weibull {
    fn pdf(&self, x: &f64) -> f64 {
        if *x >= 0.0 {
            let (lambda, k) = get_params!(self);
            let xol = x / lambda;

            k / lambda * xol.powf(k - 1.0) * (-xol.powf(k)).exp()
        } else {
            0.0
        }
    }
}

impl UnivariateMoments for Weibull {
    fn mean(&self) -> f64 { self.0.lambda.0 * self.gamma_i(1.0) }

    fn variance(&self) -> f64 {
        let lambda = self.0.lambda.0;

        let bracket_term1 = self.gamma_i(2.0);
        let bracket_term2 = self.gamma_i(1.0);

        let bracket_term = bracket_term1 - bracket_term2 * bracket_term2;

        lambda * lambda * bracket_term
    }

    fn skewness(&self) -> f64 {
        let mu = self.mean();
        let var = self.variance();
        let lambda = self.0.lambda.0;

        let numerator =
            self.gamma_i(3.0) * lambda * lambda * lambda
            - 3.0 * mu * var
            - mu * mu * mu;
        let denominator = var.powf(THREE_HALVES);

        numerator / denominator
    }

    fn excess_kurtosis(&self) -> f64 {
        // Version 1:
        let gamma_1 = self.gamma_i(1.0);
        let gamma_2 = self.gamma_i(2.0);
        let gamma_1_sq = gamma_1 * gamma_1;

        let g2mg1sq = gamma_2 - gamma_1_sq;

        let numerator = 12.0 * gamma_1_sq * gamma_2
            - 6.0 * gamma_1_sq * gamma_1_sq
            - 3.0 * gamma_2 * gamma_2
            - 4.0 * gamma_1 * self.gamma_i(3.0)
            + self.gamma_i(4.0);
        let denominator = g2mg1sq * g2mg1sq;

        numerator / denominator

        // Version 2:
        // let gamma_4 = self.gamma_i(4.0);

        // let mu = self.mean();
        // let mu2 = mu * mu;
        // let var = self.variance();
        // let skewness = self.skewness();

        // let numerator = self.lambda * self.lambda * self.lambda * self.lambda * gamma_4 -
        // 4.0 * skewness * var.powf(THREE_HALVES) * mu -
        // 6.0 * mu2 * var - mu2 * mu2;
        // let denominator = var * var;

        // numerator / denominator
    }
}

impl Quantiles for Weibull {
    fn quantile(&self, _: Probability) -> f64 {
        unimplemented!()
    }

    fn median(&self) -> f64 {
        let (lambda, k) = get_params!(self);

        lambda * 2.0f64.ln().powf(1.0 / k)
    }
}

impl Modes for Weibull {
    fn modes(&self) -> Vec<f64> {
        let k = self.0.k.0;

        vec![if k > 0.0 {
            0.0
        } else {
            self.0.lambda.0 * ((k - 1.0) / k).powf(1.0 / k)
        }]
    }
}

impl Entropy for Weibull {
    fn entropy(&self) -> f64 {
        use special_fun::FloatSpecial;

        let (lambda, k) = get_params!(self);
        let gamma = -(1.0f64.digamma());

        gamma * (1.0 - 1.0 / k) + (lambda / k).ln() + 1.0
    }
}

impl fmt::Display for Weibull {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let (lambda, k) = get_params!(self);

        write!(f, "Weibull({}, {})", lambda, k)
    }
}