1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
use crate::{
    consts::{ONE_THIRD, PI2_OVER_6, PI3, TWELVE_FIFTHS},
    params::{Loc, Shape},
    prelude::*,
};
use rand::Rng;
use spaces::real::Interval;
use special_fun::FloatSpecial;
use std::{f64::INFINITY, fmt};

params! {
    Params {
        mu: Loc<f64>,
        sigma: Shape<f64>,
        zeta: Shape<f64>
    }
}

new_dist!(GeneralisedExtremeValue<Params>);

macro_rules! get_params {
    ($self:ident) => { ($self.0.mu.0, $self.0.sigma.0, $self.0.zeta.0) }
}

impl GeneralisedExtremeValue {
    pub fn new(mu: f64, sigma: f64, zeta: f64) -> Result<GeneralisedExtremeValue, failure::Error> {
        Params::new(mu, sigma, zeta).map(|p| GeneralisedExtremeValue(p))
    }

    pub fn new_unchecked(mu: f64, sigma: f64, zeta: f64) -> GeneralisedExtremeValue {
        GeneralisedExtremeValue(Params::new_unchecked(mu, sigma, zeta))
    }
}

impl GeneralisedExtremeValue {
    #[inline]
    fn g_func(&self, k: f64) -> f64 {
        (1.0 - k * self.0.zeta.0).gamma()
    }

    fn t_func(&self, x: f64) -> f64 {
        let (mu, sigma, zeta) = get_params!(self);

        let z = (x - mu) / sigma;

        if (zeta - 0.0) < 1e-7 {
            (-z).exp()
        } else {
            (1.0 + zeta * z).powf(-1.0 / zeta)
        }
    }
}

impl Distribution for GeneralisedExtremeValue {
    type Support = Interval;
    type Params = Params;

    fn support(&self) -> Interval {
        use std::cmp::Ordering::*;

        let (mu, sigma, zeta) = get_params!(self);

        match zeta.partial_cmp(&0.0).expect("Invalid value provided for `zeta`.") {
            Less => Interval::right_bounded(mu - sigma / zeta),
            Equal => Interval::unbounded(),
            Greater => Interval::left_bounded(mu - sigma / zeta),
        }
    }

    fn params(&self) -> Params { self.0 }

    fn cdf(&self, x: &f64) -> Probability {
        Probability::new_unchecked((-self.t_func(*x)).exp())
    }

    fn sample<R: Rng + ?Sized>(&self, _: &mut R) -> f64 {
        unimplemented!()
    }
}

impl ContinuousDistribution for GeneralisedExtremeValue {
    fn pdf(&self, x: &f64) -> f64 {
        let tx = self.t_func(*x);

        tx.powf(self.0.zeta.0 + 1.0) * (-tx).exp() / self.0.sigma.0
    }
}

impl UnivariateMoments for GeneralisedExtremeValue {
    fn mean(&self) -> f64 {
        let (mu, sigma, zeta) = get_params!(self);

        if zeta >= 1.0 {
            INFINITY
        } else if zeta.abs() < 1e-7 {
            mu - sigma * 1.0f64.digamma()
        } else {
            mu + sigma * (self.g_func(1.0) - 1.0) / zeta
        }
    }

    fn variance(&self) -> f64 {
        let sigma = self.0.sigma.0;
        let zeta = self.0.zeta.0;

        if zeta >= 0.5 {
            INFINITY
        } else if zeta.abs() < 1e-7 {
            sigma * sigma * PI2_OVER_6
        } else {
            let g1 = self.g_func(1.0);
            let g2 = self.g_func(2.0);

            sigma * sigma * (g2 - g1 * g1) / zeta / zeta
        }
    }

    fn skewness(&self) -> f64 {
        let zeta = self.0.zeta.0;

        if zeta >= ONE_THIRD {
            INFINITY
        } else if zeta.abs() < 1e-7 {
            12.0 * 6.0f64.sqrt() * 3.0f64.riemann_zeta() / PI3
        } else {
            let g1 = self.g_func(1.0);
            let g2 = self.g_func(2.0);
            let g3 = self.g_func(3.0);

            let numerator = g3 - 3.0 * g2 * g1 + 2.0 * g1.powi(3);
            let denominator = (g2 - g1 * g1).powf(3.0 / 2.0);

            zeta.signum() * numerator / denominator
        }
    }

    fn excess_kurtosis(&self) -> f64 {
        let zeta = self.0.zeta.0;

        if zeta >= 0.25 {
            INFINITY
        } else if zeta.abs() < 1e-7 {
            TWELVE_FIFTHS
        } else {
            let g1 = self.g_func(1.0);
            let g2 = self.g_func(2.0);
            let g3 = self.g_func(3.0);
            let g4 = self.g_func(4.0);

            let numerator =
                g4 - 4.0 * g3 * g1 - 3.0 * g2 * g2 + 12.0 * g2 * g1 * g1 - 6.0 * g1.powi(4);
            let denominator = (g2 - g1 * g1).powi(2);

            numerator / denominator
        }
    }
}

impl Quantiles for GeneralisedExtremeValue {
    fn quantile(&self, _: Probability) -> f64 {
        unimplemented!()
    }

    fn median(&self) -> f64 {
        let (mu, sigma, zeta) = get_params!(self);

        if zeta.abs() < 1e-7 {
            mu - sigma * 2.0f64.ln().ln()
        } else {
            mu + sigma * (2.0f64.ln().powf(-zeta) - 1.0) / zeta
        }
    }
}

impl Modes for GeneralisedExtremeValue {
    fn modes(&self) -> Vec<f64> {
        let (mu, sigma, zeta) = get_params!(self);

        vec![if zeta.abs() < 1e-7 {
            mu
        } else {
            mu + sigma * ((1.0 + zeta).powf(-zeta) - 1.0) / zeta
        }]
    }
}

impl Entropy for GeneralisedExtremeValue {
    fn entropy(&self) -> f64 {
        let euler = -1.0f64.digamma();

        self.0.sigma.0.ln() + euler * self.0.zeta.0 + euler + 1.0
    }
}

impl fmt::Display for GeneralisedExtremeValue {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let (mu, sigma, zeta) = get_params!(self);

        write!(f, "GEV({}, {}, {})", mu, sigma, zeta)
    }
}