1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
use crate::{
    consts::THREE_HALVES,
    prelude::*,
};
use rand::Rng;
use spaces::real::PositiveReals;
use std::fmt;

pub use crate::params::DOF;

new_dist!(Chi<DOF<usize>>);

macro_rules! get_k {
    ($self:ident) => { ($self.0).0 as f64 }
}

impl Chi {
    pub fn new(dof: usize) -> Result<Chi, failure::Error> {
        Ok(Chi(DOF::new(dof)?))
    }

    pub fn new_unchecked(dof: usize) -> Chi {
        Chi(DOF(dof))
    }

    #[inline(always)]
    pub fn k(&self) -> f64 { get_k!(self) }
}

impl Distribution for Chi {
    type Support = PositiveReals;
    type Params = DOF<usize>;

    fn support(&self) -> PositiveReals { PositiveReals }

    fn params(&self) -> DOF<usize> { self.0 }

    fn cdf(&self, x: &f64) -> Probability {
        use special_fun::FloatSpecial;

        Probability::new_unchecked((get_k!(self) / 2.0).gammainc(x * x / 2.0))
    }

    fn sample<R: Rng + ?Sized>(&self, _: &mut R) -> f64 {
        unimplemented!()
    }
}

impl ContinuousDistribution for Chi {
    fn pdf(&self, x: &f64) -> f64 {
        use special_fun::FloatSpecial;

        let k = get_k!(self);
        let ko2 = k / 2.0;
        let norm = 2.0f64.powf(ko2 - 1.0) * ko2.gamma();

        x.powf(k - 1.0) * (-x * x / 2.0).exp() / norm
    }
}

impl UnivariateMoments for Chi {
    fn mean(&self) -> f64 {
        use special_fun::FloatSpecial;

        let k = get_k!(self);

        2.0f64.sqrt() * ((k + 1.0) / 2.0).gamma() / (k / 2.0).gamma()
    }

    fn variance(&self) -> f64 {
        let k = get_k!(self);
        let mu = self.mean();

        k - mu * mu
    }

    fn skewness(&self) -> f64 {
        let mu = self.mean();
        let var = self.variance();

        mu / var.powf(THREE_HALVES) * (1.0 - 2.0 * var)
    }

    fn excess_kurtosis(&self) -> f64 {
        let mu = self.mean();
        let var = self.variance();
        let std = var.sqrt();
        let skewness = self.skewness();

        2.0 / var * (1.0 - mu * std * skewness - var)
    }
}

impl Quantiles for Chi {
    fn quantile(&self, _: Probability) -> f64 {
        unimplemented!()
    }

    fn median(&self) -> f64 {
        let k = get_k!(self);

        (k * (1.0 - 2.0 / 9.0 / k).powi(3)).sqrt()
    }
}

impl Modes for Chi {
    fn modes(&self) -> Vec<f64> {
        let k = (self.0).0;

        if k >= 1 {
            vec![((k - 1) as f64).sqrt()]
        } else {
            vec![]
        }
    }
}

impl Entropy for Chi {
    fn entropy(&self) -> f64 {
        use special_fun::FloatSpecial;

        let k = get_k!(self);
        let ko2 = k / 2.0;

        ko2.gamma().ln() + (k - 2.0f64.ln() - (k - 1.0) * ko2.digamma())
    }
}

impl fmt::Display for Chi {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Chi({})", self.k())
    }
}