1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
//! JSON number types expressible in a JSONPath query.
//!
//! Exposes the [`JsonInt`] and [`JsonUInt`] types
//! that can represent any numbers in the range [-2<sup>53</sup>+1, 2<sup>53</sup>-1],
//! with the unsigned version additionally guaranteed to be non-negative. All operations
//! implemented are automatically checked for over- and underflow.
//!
//! This is governed by the [I-JSON IETF specification](https://www.rfc-editor.org/rfc/rfc7493.html#section-2).
//! All numbers appearing in a JSONPath query are required to be I-JSON conformant
//! (see [RFC 2.1-4.1](https://www.ietf.org/archive/id/draft-ietf-jsonpath-base-21.html#section-2.1-4.1)).
//! This includes index values, all values in slice selectors, and constants
//! in filter comparison expressions.
//!
//! # Examples
//! ```
//! # use rsonpath_syntax::num::{JsonInt, JsonUInt};
//! // An i32/u32 converts directly to JsonInt/JsonUInt.
//! let a = JsonInt::from(-42);
//! let b = JsonUInt::from(42);
//! // i64/u64 has to be checked for overflow.
//! let c = JsonInt::try_from(42_000_000_000_000_i64).expect("within range");
//! let d = JsonInt::try_from(42_000_000_000_000_000_i64).expect_err("too large");
//!
//! assert_eq!(a.as_i64(), -42);
//! assert_eq!(b.as_u64(), 42);
//! assert_eq!(c.as_i64(), 42_000_000_000_000_i64);
//! ```
pub mod error;
use crate::num::error::{JsonFloatConvertError, JsonFloatParseError, JsonIntOverflowError, JsonIntParseError};
use std::{
fmt::{self, Display, Formatter},
num::{NonZeroU32, NonZeroU64},
str::FromStr,
};
/// Signed interoperable JSON integer.
///
/// Provides an [IETF-conforming integer value](https://www.rfc-editor.org/rfc/rfc7493.html#section-2)
/// Values are \[-2<sup>53</sup>+1, 2<sup>53</sup>-1].
///
/// All values in a JSONPath query are limited to this range for interoperability
/// (see [RFC 2.1-4.1](https://www.ietf.org/archive/id/draft-ietf-jsonpath-base-21.html#section-2.1-4.1)).
///
/// The unsigned version is [`JsonUInt`].
///
/// # Examples
/// ```
/// # use rsonpath_syntax::num::JsonInt;
/// let two = JsonInt::from(2);
/// let zero = JsonInt::from(0);
/// let negative = JsonInt::from(-2);
///
/// assert_eq!(two.as_i64(), 2);
/// assert_eq!(zero.as_i64(), 0);
/// assert_eq!(negative.as_i64(), -2);
///
/// let too_big = JsonInt::try_from(1_i64 << 53).expect_err("out of range");
/// let too_small = JsonInt::try_from(-(1_i64 << 53)).expect_err("out of range");
/// ```
#[derive(Clone, Copy, Default, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct JsonInt(i64);
/// Unsigned interoperable JSON integer.
///
/// Provides an [IETF-conforming integer value](https://www.rfc-editor.org/rfc/rfc7493.html#section-2)
/// guaranteed to be non-negative. Values are \[0, (2<sup>53</sup>)-1].
///
/// All values in a JSONPath query are limited to the \[-2<sup>53</sup>+1, (2<sup>53</sup>)-1]
/// range for interoperability
/// (see [RFC 2.1-4.1](https://www.ietf.org/archive/id/draft-ietf-jsonpath-base-21.html#section-2.1-4.1)).
/// Some, like array indices, are additionally restricted to the non-negative part.
///
/// The signed version is [`JsonInt`].
///
/// # Examples
/// ```
/// # use rsonpath_syntax::num::JsonUInt;
/// let two = JsonUInt::from(2);
/// let zero = JsonUInt::from(0);
///
/// assert_eq!(two.as_u64(), 2);
/// assert_eq!(zero.as_u64(), 0);
///
/// let too_big = JsonUInt::try_from(1_u64 << 53).expect_err("out of range");
/// ```
#[derive(Clone, Copy, Default, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct JsonUInt(u64);
/// Unsigned interoperable JSON integer known to be non-zero.
///
/// Provides an [IETF-conforming integer value](https://www.rfc-editor.org/rfc/rfc7493.html#section-2)
/// guaranteed to be positive. Values are \(0, (2<sup>53</sup>)-1].
///
/// All values in a JSONPath query are limited to the \[-2<sup>53</sup>+1, (2<sup>53</sup>)-1]
/// range for interoperability
/// (see [RFC 2.1-4.1](https://www.ietf.org/archive/id/draft-ietf-jsonpath-base-21.html#section-2.1-4.1)).
/// Some, like array indices, are additionally restricted to the non-negative part, while
/// indexing from the end of an array requires a positive value.
///
/// The zero-compatible version is [`JsonUInt`].
///
/// # Examples
/// ```
/// # use rsonpath_syntax::num::JsonNonZeroUInt;
/// let two = JsonNonZeroUInt::try_from(2).expect("within range");
/// assert_eq!(two.as_u64(), 2);
///
/// let zero = JsonNonZeroUInt::try_from(0).expect_err("out of range");
/// let too_big = JsonNonZeroUInt::try_from(1_u64 << 53).expect_err("out of range");
/// ```
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct JsonNonZeroUInt(NonZeroU64);
/// IEEE 754 conformant floating-point number expressible in JSON.
///
/// These numbers behave as standard binary64 (double precision) numbers
/// restricted as in [the JSON specification](https://www.rfc-editor.org/rfc/rfc7159#section-6),
/// i.e. they cannot be NaN, +Inf, or -Inf.
///
/// These restrictions allow some "nice" properties - [`JsonFloat`] implements
/// [`Eq`] and [`Ord`], as well as [`Hash`](std::hash::Hash), and its binary representation
/// is the same as a regular [`f64`].
///
/// ## Integer conversions
///
/// Because of interoperability restrictions on [`JsonInt`], any [`JsonInt`] losslessly converts
/// to a [`JsonFloat`] and back. Therefore, [`JsonInt`] is [`Into<JsonFloat>`](`Into`), and
/// [`JsonFloat`] is [`TryInto<JsonInt>`], where the conversion succeeds if and only if
/// the float is an exactly representable integer in the range \[-2<sup>53</sup>+1, (2<sup>53</sup>)-1].
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct JsonFloat(f64);
// This is correct since the allowed values for `JsonFloat` don't include NaNs or infinities.
impl Eq for JsonFloat {}
impl PartialOrd for JsonFloat {
#[inline(always)]
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Ord for JsonFloat {
#[inline(always)]
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.0.partial_cmp(&other.0).expect("JsonFloat never NaN")
}
}
impl std::hash::Hash for JsonFloat {
#[inline(always)]
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.0.to_bits().hash(state);
}
}
/// JSONPath numeric type - either a [`JsonInt`] or a [`JsonFloat`].
///
/// Note that this type is not normalized and an integer in the range
/// \[-2<sup>53</sup>+1, (2<sup>53</sup>)-1] can be represented both as
/// a [`JsonNumber::Int`] and as a [`JsonNumber::Float`].
///
/// Which type is produced when is a parser implementation detail.
/// If you need to rely on integers always being represented as [`JsonNumber::Int`]
/// you can use [`JsonNumber::normalize`], or manually inspect the underlying
/// [`JsonFloat`] using [`JsonFloat::is_int`] and its [`TryInto<JsonInt>`] conversion.
///
/// ## Examples
///
/// ```
/// # use rsonpath_syntax::num::{JsonNumber, JsonInt, JsonFloat};
///
/// let int = JsonInt::from(42);
/// let float = JsonFloat::try_from(42.01).unwrap();
///
/// let num_int = JsonNumber::from(int);
/// let num_float = JsonNumber::from(float);
///
/// assert_eq!(num_int, JsonNumber::Int(int));
/// assert_eq!(num_float, JsonNumber::Float(float));
/// assert_eq!("42", num_int.to_string());
/// assert_eq!("42.01", num_float.to_string());
/// ```
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
pub enum JsonNumber {
/// A [`JsonInt`] number.
Int(JsonInt),
/// A [`JsonFloat`] number.
Float(JsonFloat),
}
impl PartialEq for JsonNumber {
#[inline]
fn eq(&self, other: &Self) -> bool {
match (self.normalize(), other.normalize()) {
(Self::Int(l0), Self::Int(r0)) => l0 == r0,
(Self::Float(l0), Self::Float(r0)) => l0 == r0,
_ => false,
}
}
}
impl Eq for JsonNumber {}
impl std::hash::Hash for JsonNumber {
#[inline]
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
match self.normalize() {
Self::Int(i) => (0, i).hash(state),
Self::Float(f) => (1, f).hash(state),
}
}
}
impl PartialOrd for JsonNumber {
#[inline(always)]
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Ord for JsonNumber {
#[inline]
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
match (self, other) {
(Self::Int(i1), Self::Int(i2)) => i1.cmp(i2),
(Self::Int(i), Self::Float(f)) => JsonFloat::from(*i).cmp(f),
(Self::Float(f), Self::Int(i)) => f.cmp(&JsonFloat::from(*i)),
(Self::Float(f1), Self::Float(f2)) => f1.cmp(f2),
}
}
}
/// The upper unsigned inclusive bound on JSON integers (2<sup>53</sup>-1).
const JSON_UINT_UPPER_LIMIT: u64 = (1 << 53) - 1;
/// The upper inclusive bound on JSON integers (2<sup>53</sup>-1).
const JSON_INT_UPPER_LIMIT: i64 = (1 << 53) - 1;
/// The lower inclusive bound on JSON integers (-2<sup>53</sup>+1).
const JSON_INT_LOWER_LIMIT: i64 = -(1 << 53) + 1;
impl JsonInt {
/// A constant value of zero. Equivalent to [`JsonInt::default`](`Default::default`).
///
/// # Examples
/// ```
/// # use rsonpath_syntax::num::JsonInt;
/// assert_eq!(JsonInt::ZERO.as_i64(), 0);
/// ```
pub const ZERO: Self = Self::new(0);
/// A constant value of one.
///
/// # Examples
/// ```
/// # use rsonpath_syntax::num::JsonInt;
/// assert_eq!(JsonInt::ONE.as_i64(), 1);
/// ```
pub const ONE: Self = Self::new(1);
/// A constant for the smallest expressible value.
///
/// # Examples
/// ```
/// # use rsonpath_syntax::num::JsonInt;
/// let min_i64 = -(1 << 53) + 1;
///
/// assert_eq!(JsonInt::MIN.as_i64(), min_i64);
/// assert_eq!(JsonInt::try_from(min_i64).expect("within range"), JsonInt::MIN);
/// ```
pub const MIN: Self = Self::new(JSON_INT_LOWER_LIMIT);
/// A constant for the largest expressible value.
///
/// # Examples
/// ```
/// # use rsonpath_syntax::num::JsonInt;
/// let max_i64 = (1 << 53) - 1;
///
/// assert_eq!(JsonInt::MAX.as_i64(), max_i64);
/// assert_eq!(JsonInt::try_from(max_i64).expect("within range"), JsonInt::MAX);
/// ```
pub const MAX: Self = Self::new(JSON_INT_UPPER_LIMIT);
/// Create a new value from a [`i64`].
#[must_use]
const fn new(index: i64) -> Self {
Self(index)
}
/// Increase the integer by one.
///
/// # Errors
/// Will return `Err` if the increment causes the [`JsonInt`] to exceed
/// the upper limit of [`JsonInt::MAX`].
///
/// # Examples
/// ```
/// # use rsonpath_syntax::num::JsonInt;
/// let mut x = JsonInt::ZERO;
/// x.try_increment().expect("within range");
/// assert_eq!(x.as_i64(), 1);
///
/// let mut y = JsonInt::MIN;
/// y.try_increment().expect("within range");
/// assert_eq!(y.as_i64(), -(1 << 53) + 2);
///
/// JsonInt::MAX.try_increment().expect_err("out of range");
/// ```
#[inline]
pub fn try_increment(&mut self) -> Result<(), JsonIntOverflowError> {
let new_index = self.0 + 1;
if new_index <= JSON_INT_UPPER_LIMIT {
self.0 = new_index;
Ok(())
} else {
Err(JsonIntOverflowError::int_neg_overflow(new_index))
}
}
/// Return the value stored as a regular [`i64`].
///
/// # Examples
/// ```
/// # use rsonpath_syntax::num::JsonInt;
/// let val = JsonInt::from(42);
/// assert_eq!(val.as_i64(), 42);
/// ```
#[must_use]
#[inline(always)]
pub const fn as_i64(&self) -> i64 {
self.0
}
/// Return the negation of the value.
///
/// This is guaranteed to succeed, as the valid range is symmetrical.
/// ```
/// # use rsonpath_syntax::num::JsonInt;
/// let x = JsonInt::from(-42);
/// assert_eq!(x.neg().as_i64(), 42);
/// ```
#[must_use]
#[inline(always)]
pub const fn neg(&self) -> Self {
Self(-self.0)
}
/// Return the absolute value of this integer as a [`JsonUInt`].
///
/// This is guaranteed to succeed, as the valid range is symmetrical.
///
/// # Examples
/// ```
/// # use rsonpath_syntax::num::{JsonInt, JsonUInt};
/// let pos = JsonInt::from(42);
/// let neg = JsonInt::from(-42);
/// assert_eq!(neg.abs().as_u64(), 42);
/// assert_eq!(pos.abs().as_u64(), 42);
/// ```
#[inline(always)]
#[must_use]
pub const fn abs(&self) -> JsonUInt {
JsonUInt(self.0.unsigned_abs())
}
}
impl JsonUInt {
/// A constant value of zero. Equivalent to [`JsonUInt::default`](`Default::default`).
///
/// # Examples
/// ```
/// # use rsonpath_syntax::num::JsonUInt;
/// assert_eq!(JsonUInt::ZERO.as_u64(), 0);
/// ```
pub const ZERO: Self = Self::new(0);
/// A constant value of one.
///
/// # Examples
/// ```
/// # use rsonpath_syntax::num::JsonUInt;
/// assert_eq!(JsonUInt::ONE.as_u64(), 1);
/// ```
pub const ONE: Self = Self::new(1);
/// A constant for the largest expressible value.
///
/// # Examples
/// ```
/// # use rsonpath_syntax::num::JsonUInt;
/// let max_u64 = (1 << 53) - 1;
///
/// assert_eq!(JsonUInt::MAX.as_u64(), max_u64);
/// assert_eq!(JsonUInt::try_from(max_u64).expect("within range"), JsonUInt::MAX);
/// ```
pub const MAX: Self = Self::new(JSON_UINT_UPPER_LIMIT);
/// Create a new value from a [`u64`].
#[must_use]
const fn new(index: u64) -> Self {
Self(index)
}
/// Increase the integer by one.
///
/// # Errors
/// Will return `Err` if the increment causes the [`JsonUInt`] to exceed
/// the upper limit of [`JsonUInt::MAX`].
///
/// # Examples
/// ```
/// # use rsonpath_syntax::num::JsonUInt;
/// let mut x = JsonUInt::ZERO;
/// x.try_increment().expect("within range");
/// JsonUInt::MAX.try_increment().expect_err("out of range");
///
/// assert_eq!(x.as_u64(), 1);
/// ```
#[inline]
pub fn try_increment(&mut self) -> Result<(), JsonIntOverflowError> {
let new_index = self.0 + 1;
if new_index <= JSON_UINT_UPPER_LIMIT {
self.0 = new_index;
Ok(())
} else {
Err(JsonIntOverflowError::uint_pos_overflow(new_index))
}
}
/// Return the negation of the value as a [`JsonInt`].
///
/// This is guaranteed to succeed, as the valid range is symmetrical.
/// ```
/// # use rsonpath_syntax::num::{JsonInt, JsonUInt};
/// let x = JsonUInt::from(42);
/// let y = JsonInt::from(-42);
/// assert_eq!(x.neg(), y);
/// ```
#[must_use]
#[inline(always)]
pub const fn neg(&self) -> JsonInt {
JsonInt(-(self.0 as i64))
}
/// Return the value stored as a regular [`u64`].
///
/// # Examples
/// ```
/// # use rsonpath_syntax::num::JsonUInt;
/// let val = JsonUInt::from(42);
/// assert_eq!(val.as_u64(), 42);
/// ```
#[must_use]
#[inline(always)]
pub const fn as_u64(&self) -> u64 {
self.0
}
}
impl JsonNonZeroUInt {
#[must_use]
const fn new(value: NonZeroU64) -> Self {
Self(value)
}
/// Return the value stored as a [`NonZeroU64`].
///
/// # Examples
/// ```
/// # use rsonpath_syntax::num::JsonNonZeroUInt;
/// # use std::num::NonZeroU64;
/// let val = JsonNonZeroUInt::try_from(42).unwrap();
/// assert_eq!(val.as_non_zero_u64(), NonZeroU64::new(42).unwrap());
/// ```
#[must_use]
#[inline(always)]
pub const fn as_non_zero_u64(&self) -> NonZeroU64 {
self.0
}
/// Return the value stored as a [`u64`].
///
/// # Examples
/// ```
/// # use rsonpath_syntax::num::JsonNonZeroUInt;
/// let val = JsonNonZeroUInt::try_from(42).unwrap();
/// assert_eq!(val.as_u64(), 42);
/// ```
#[must_use]
#[inline(always)]
pub const fn as_u64(&self) -> u64 {
self.0.get()
}
}
impl JsonFloat {
fn new(x: f64) -> Self {
debug_assert!(x.is_finite());
Self(x)
}
/// Return the value stored as a [`f64`].
///
/// # Examples
/// ```
/// # use rsonpath_syntax::num::JsonFloat;
/// let val = JsonFloat::try_from(3.14).unwrap();
/// assert_eq!(val.as_f64(), 3.14);
/// ```
#[inline]
#[must_use]
pub fn as_f64(&self) -> f64 {
self.0
}
/// Check if this float is an equivalent of some [`JsonInt`].
///
/// The range of valid [`JsonInt`] is exactly representable as [`JsonFloat`] values.
/// This function returns true if the float is one of those valid values, i.e. an
/// integer and in the [`JsonInt`] bounds.
///
/// ## Examples
/// ```
/// # use rsonpath_syntax::num::JsonFloat;
///
/// let f1 = JsonFloat::try_from(3.0).unwrap();
/// let f2 = JsonFloat::try_from(3.14).unwrap();
/// let f3 = JsonFloat::try_from(1e54).unwrap();
///
/// assert!(f1.is_int());
/// assert!(!f2.is_int());
/// assert!(!f3.is_int());
/// ```
#[inline]
#[must_use]
pub fn is_int(&self) -> bool {
JsonInt::try_from(*self).is_ok()
}
}
impl JsonNumber {
/// Normalize a [`JsonNumber`] so that valid [`JsonInt`] value is represented
/// by [`JsonNumber::Int`].
///
/// The parser is allowed to represent a normal JSON integer (e.g. 17) as an
/// equivalent JSON float (17.0). Calling `normalize` ensures all values
/// representable by a [`JsonInt`] are indeed represented as such.
///
/// ## Examples
///
/// ```
/// # use rsonpath_syntax::num::{JsonNumber, JsonInt, JsonFloat};
///
/// // Creating a JsonNumber from a JsonFloat always gives JsonNumber::Float.
/// let f1 = JsonFloat::try_from(17.0).unwrap();
/// let nf1 = JsonNumber::from(f1);
/// assert_eq!(nf1, JsonNumber::Float(f1));
/// // Normalizing will give us an integer representation, when possible.
/// assert_eq!(nf1.normalize(), JsonNumber::Int(17.into()));
///
/// // If the float is an integer within range normalization will succeed.
/// let f2 = JsonFloat::try_from(1e15).unwrap();
/// let nf2 = JsonNumber::from(f2);
/// assert_eq!(nf2, JsonNumber::Float(f2));
/// assert_eq!(nf2.normalize(), JsonNumber::Int(1_000_000_000_000_000_i64.try_into().unwrap()));
///
/// // An int is an int, and remains so under normalization.
/// let i1 = JsonInt::from(42);
/// let ni1 = JsonNumber::from(i1);
/// assert_eq!(ni1, JsonNumber::Int(i1));
/// assert_eq!(ni1.normalize(), JsonNumber::Int(i1));
///
/// // A float that is not an int remains the same when normalized.
/// let f3 = JsonFloat::try_from(3.14).unwrap();
/// let nf3 = JsonNumber::from(f3);
/// assert_eq!(nf3, JsonNumber::Float(f3));
/// assert_eq!(nf3.normalize(), JsonNumber::Float(f3));
///
/// // A float that is an int, but outside of the interoperable JsonInt range,
/// // is not normalized.
/// let f4 = JsonFloat::try_from(1e120).unwrap();
/// let nf4 = JsonNumber::from(f4);
/// assert_eq!(nf4, JsonNumber::Float(f4));
/// assert_eq!(nf4.normalize(), JsonNumber::Float(f4));
/// ```
#[inline]
#[must_use]
pub fn normalize(&self) -> Self {
match *self {
Self::Int(x) => Self::Int(x),
Self::Float(x) => match JsonInt::try_from(x) {
Ok(int) => Self::Int(int),
Err(_) => Self::Float(x),
},
}
}
}
impl TryFrom<i64> for JsonInt {
type Error = JsonIntOverflowError;
#[inline]
fn try_from(value: i64) -> Result<Self, Self::Error> {
if value > JSON_INT_UPPER_LIMIT {
Err(JsonIntOverflowError::int_pos_overflow(value))
} else if value < JSON_INT_LOWER_LIMIT {
Err(JsonIntOverflowError::int_neg_overflow(value))
} else {
Ok(Self::new(value))
}
}
}
impl TryFrom<u64> for JsonInt {
type Error = JsonIntOverflowError;
#[inline]
fn try_from(value: u64) -> Result<Self, Self::Error> {
if value > i64::MAX as u64 {
Err(JsonIntOverflowError::int_pos_overflow_u(value))
} else {
Self::try_from(value as i64)
}
}
}
impl From<i32> for JsonInt {
// i32 is always in the range (-2^53, 2^53)
#[inline]
fn from(value: i32) -> Self {
Self::new(i64::from(value))
}
}
impl From<u32> for JsonInt {
// u32 is always in the range (-2^53, 2^53)
#[inline]
fn from(value: u32) -> Self {
Self::new(i64::from(value))
}
}
impl From<JsonInt> for i64 {
#[inline(always)]
fn from(value: JsonInt) -> Self {
value.0
}
}
impl From<JsonUInt> for JsonInt {
#[inline(always)]
fn from(value: JsonUInt) -> Self {
// This is always safe due to the type invariant bounds.
Self::new(value.0 as i64)
}
}
impl FromStr for JsonInt {
type Err = JsonIntParseError;
#[inline]
fn from_str(s: &str) -> Result<Self, Self::Err> {
match i64::from_str(s) {
Ok(x) => x.try_into().map_err(|e| Self::Err::parse_conversion_err(s, &e)),
Err(err) => Err(Self::Err::int_parse_error(s, err.kind())),
}
}
}
impl TryFrom<u64> for JsonUInt {
type Error = JsonIntOverflowError;
#[inline]
fn try_from(value: u64) -> Result<Self, Self::Error> {
if value > JSON_UINT_UPPER_LIMIT {
Err(JsonIntOverflowError::uint_pos_overflow(value))
} else {
Ok(Self::new(value))
}
}
}
impl TryFrom<i64> for JsonUInt {
type Error = JsonIntOverflowError;
#[inline]
fn try_from(value: i64) -> Result<Self, Self::Error> {
if value < 0 {
Err(JsonIntOverflowError::negative_uint(value))
} else {
Self::try_from(value as u64)
}
}
}
impl From<u32> for JsonUInt {
// u32 is always in the range [0, 2^53)
#[inline]
fn from(value: u32) -> Self {
Self::new(u64::from(value))
}
}
impl TryFrom<i32> for JsonUInt {
type Error = JsonIntOverflowError;
#[inline]
fn try_from(value: i32) -> Result<Self, Self::Error> {
if value < 0 {
Err(JsonIntOverflowError::negative_uint(i64::from(value)))
} else {
Ok(Self::from(value as u32))
}
}
}
impl From<JsonUInt> for u64 {
#[inline(always)]
fn from(value: JsonUInt) -> Self {
value.0
}
}
impl From<JsonUInt> for i64 {
#[inline(always)]
fn from(value: JsonUInt) -> Self {
// Safe cast since JsonUInt::MAX is lower than i64::MAX.
value.0 as Self
}
}
impl TryFrom<JsonInt> for JsonUInt {
type Error = JsonIntOverflowError;
#[inline]
fn try_from(value: JsonInt) -> Result<Self, Self::Error> {
if value.0 < 0 {
Err(JsonIntOverflowError::negative_uint(value.0))
} else {
Ok(Self::new(value.0 as u64))
}
}
}
impl FromStr for JsonUInt {
type Err = JsonIntParseError;
#[inline]
fn from_str(s: &str) -> Result<Self, Self::Err> {
match i64::from_str(s) {
// u64 would work but i64 gives us a better error message for negative values.
Ok(x) => x.try_into().map_err(|e| Self::Err::parse_conversion_err(s, &e)),
Err(err) => Err(Self::Err::uint_parse_error(s, err.kind())),
}
}
}
impl From<NonZeroU32> for JsonNonZeroUInt {
// NonZeroU32 is always in the range (0, 2^53)
#[inline]
fn from(value: NonZeroU32) -> Self {
Self::new(NonZeroU64::from(value))
}
}
impl From<NonZeroU64> for JsonNonZeroUInt {
// NonZeroU64 is always in the range (0, 2^53)
#[inline]
fn from(value: NonZeroU64) -> Self {
Self::new(value)
}
}
impl TryFrom<u32> for JsonNonZeroUInt {
type Error = JsonIntOverflowError;
#[inline]
fn try_from(value: u32) -> Result<Self, Self::Error> {
Self::try_from(u64::from(value))
}
}
impl TryFrom<i32> for JsonNonZeroUInt {
type Error = JsonIntOverflowError;
#[inline]
fn try_from(value: i32) -> Result<Self, Self::Error> {
Self::try_from(i64::from(value))
}
}
impl TryFrom<u64> for JsonNonZeroUInt {
type Error = JsonIntOverflowError;
#[inline]
fn try_from(value: u64) -> Result<Self, Self::Error> {
if value > JSON_UINT_UPPER_LIMIT {
Err(JsonIntOverflowError::uint_pos_overflow(value))
} else if let Some(x) = NonZeroU64::new(value) {
Ok(Self(x))
} else {
Err(JsonIntOverflowError::zero_non_zero_uint())
}
}
}
impl TryFrom<i64> for JsonNonZeroUInt {
type Error = JsonIntOverflowError;
#[inline]
fn try_from(value: i64) -> Result<Self, Self::Error> {
if value < 0 {
Err(JsonIntOverflowError::negative_uint(value))
} else {
Self::try_from(value as u64)
}
}
}
impl TryFrom<JsonUInt> for JsonNonZeroUInt {
type Error = JsonIntOverflowError;
#[inline]
fn try_from(value: JsonUInt) -> Result<Self, Self::Error> {
Self::try_from(value.0)
}
}
impl From<JsonNonZeroUInt> for JsonUInt {
#[inline]
fn from(value: JsonNonZeroUInt) -> Self {
Self::new(value.0.get())
}
}
impl FromStr for JsonNonZeroUInt {
type Err = JsonIntParseError;
#[inline]
fn from_str(s: &str) -> Result<Self, Self::Err> {
match i64::from_str(s) {
// u64 would work but i64 gives us a better error message for negative values.
Ok(x) => x.try_into().map_err(|e| Self::Err::parse_conversion_err(s, &e)),
Err(err) => Err(Self::Err::non_zero_uint_parse_error(s, err.kind())),
}
}
}
impl TryFrom<JsonFloat> for JsonInt {
type Error = JsonIntOverflowError;
#[inline]
fn try_from(value: JsonFloat) -> Result<Self, Self::Error> {
if value.0.fract() != 0.0 {
return Err(JsonIntOverflowError::fractional(value.0));
}
// At this point the fractional part must be 0.0, so the value is *an* integer.
// We need to check that it is within bounds of JsonInt. This is correct
// only because JsonInt bounds are guaranteed to be interoperable with f64,
// so every value within is exactly representable as a f64.
let int_value = value.0.trunc();
if int_value < JSON_INT_LOWER_LIMIT as f64 {
return Err(JsonIntOverflowError::int_float_neg_overflow(value.0));
}
if int_value > JSON_INT_UPPER_LIMIT as f64 {
return Err(JsonIntOverflowError::int_float_pos_overflow(value.0));
}
// This conversion is now guaranteed to be lossless.
Ok(Self(int_value as i64))
}
}
impl From<JsonInt> for JsonFloat {
#[inline]
fn from(value: JsonInt) -> Self {
Self::new(value.0 as f64)
}
}
impl TryFrom<f32> for JsonFloat {
type Error = JsonFloatConvertError;
#[inline]
fn try_from(value: f32) -> Result<Self, Self::Error> {
if value.is_finite() {
Ok(Self::new(f64::from(value)))
} else {
Err(JsonFloatConvertError::infinite_or_nan(f64::from(value)))
}
}
}
impl TryFrom<f64> for JsonFloat {
type Error = JsonFloatConvertError;
#[inline]
fn try_from(value: f64) -> Result<Self, Self::Error> {
if value.is_finite() {
Ok(Self::new(value))
} else {
Err(JsonFloatConvertError::infinite_or_nan(value))
}
}
}
impl FromStr for JsonFloat {
type Err = JsonFloatParseError;
/* Fact #1: parsing floats is hard.
* Fact #2: grammar accepted by `f64::from_str` is slightly different from the
* JSONPath grammar for floats.
* Fact #3: I have little interest in rewriting the close to 2,000 lines of code
* of Rust's `dec2flt` to incorporate those differences.
*
* The grammars accepted by Rust and JSON are, respectively:
; Rust f64::from_str
Float ::= Sign? ( 'inf' | 'infinity' | 'nan' | Number )
Number ::= ( Digit+ |
Digit+ '.' Digit* |
Digit* '.' Digit+ ) Exp?
Exp ::= 'e' Sign? Digit+
Sign ::= [+-]
Digit ::= [0-9]
; JSON
Number ::= (Int | "-0") Frac? Exp?
Int ::= "0" |
("-"? Digit1 Digit*)
Frac ::= "." Digit+
Exp ::= "e" Sign? Digit+
Sign ::= [+-]
Digit ::= [0-9]
Digit1 ::= [1-9]
* Here are all the differences:
* 1) 'inf', 'infinity', and 'nan' are acceptable only in Rust.
* 2) Rust allows an explicit leading `+`, JSON does not.
* 3) Rust allows an empty integer part, e.g. '.14' as equivalent to '0.14'; JSON does not.
* 4) Rust allows an empty decimal part, e.g. '3.' as equivalent to '3.0'; JSON does not.
* 5) Leading zeroes of the integral part are accepted only in Rust.
*
* Both accept the exponent char as either lower or uppercase.
* Since Rust's grammar is more general than JSON (L(JSON) \subset L(Rust))
* we can use Rust's parser and enforce stricter JSON rules independently.
*
* To satisfy all restrictions, we parse with Rust first and then:
* - enforce the result is not Inf or NaN (rule 1);
* - enforce the string does not begin with '+' (rule 2);
* - check if the decimal period exists (Rust guarantees there is at most one),
* and enforce it is both preceded and followed by a digit (rules 3 and 4);
* - enforce there are no leading zeroes (rule 5).
*
* Performance-wise this is not ideal - we're effectively inspecting the string twice.
* But without access into the `f64::from_str` black-box the only solution would be
* to rewrite the routine here and add the restrictions, and we rejected that at the start.
* If Rust ever exposes an API to create an f64 out of the mantissa and exponent then it might
* be possible - the hardest bits of the parsing routine happen after these are actually extracted
* from the string. See: https://github.com/rust-lang/rust/blob/master/library/core/src/num/dec2flt/mod.rs
*/
#[inline]
fn from_str(s: &str) -> Result<Self, Self::Err> {
match f64::from_str(s) {
Ok(x) => {
assert!(!s.is_empty()); // Empty strings are not accepted by f64::from_str.
// Rule 1.
if x.is_nan() || x.is_infinite() {
return Err(Self::Err::infinite_or_nan(s));
}
if let Some((before, after)) = s.split_once('.') {
// Rule 3. The case `before == "+"` is checked later.
if before.is_empty() || before == "-" {
return Err(Self::Err::nothing_before_decimal_point(s));
}
// Rule 4.
if after.is_empty() || after.starts_with(['e', 'E']) {
return Err(Self::Err::nothing_after_decimal_point(s));
}
}
let mut chars = s.chars();
let first_c = chars.next().expect("s is non-empty");
// Rule 2.
if first_c == '+' {
return Err(Self::Err::leading_plus_sign(s));
}
// Skip the leading minus if it exists.
let s_no_sign = if first_c == '-' { chars.as_str() } else { s };
// Rule 5.
// Check for leading zeroes. We strip the first zero from the front and check what's left.
// The only acceptable case is that the next character is not a digit.
if let Some(rest) = s_no_sign.strip_prefix('0') {
if matches!(rest.chars().next(), Some('0'..='9')) {
return Err(Self::Err::leading_zeros(s));
}
}
Ok(Self(x))
}
// Remember that all floats valid in JSON are also accepted by Rust,
// so this is *definitely* not a valid JSON float.
Err(_) => Err(Self::Err::f64_parse_error(s)),
}
}
}
impl From<JsonInt> for JsonNumber {
#[inline]
fn from(value: JsonInt) -> Self {
Self::Int(value)
}
}
impl From<JsonFloat> for JsonNumber {
#[inline]
fn from(value: JsonFloat) -> Self {
Self::Float(value)
}
}
impl Display for JsonInt {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl Display for JsonUInt {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl Display for JsonNonZeroUInt {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl Display for JsonFloat {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl Display for JsonNumber {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self {
Self::Int(int) => int.fmt(f),
Self::Float(flt) => flt.fmt(f),
}
}
}
#[cfg(feature = "arbitrary")]
#[cfg_attr(docsrs, doc(cfg(feature = "arbitrary")))]
impl<'a> arbitrary::Arbitrary<'a> for JsonInt {
#[inline]
fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
let val = u.int_in_range(JSON_INT_LOWER_LIMIT..=JSON_INT_UPPER_LIMIT)?;
Ok(Self::new(val))
}
}
#[cfg(feature = "arbitrary")]
#[cfg_attr(docsrs, doc(cfg(feature = "arbitrary")))]
impl<'a> arbitrary::Arbitrary<'a> for JsonUInt {
#[inline]
fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
let val = u.int_in_range(0..=JSON_UINT_UPPER_LIMIT)?;
Ok(Self::new(val))
}
}
#[cfg(feature = "arbitrary")]
#[cfg_attr(docsrs, doc(cfg(feature = "arbitrary")))]
impl<'a> arbitrary::Arbitrary<'a> for JsonNonZeroUInt {
#[inline]
fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
let val = u.int_in_range(1..=JSON_UINT_UPPER_LIMIT)?;
Ok(Self::new(NonZeroU64::new(val).expect("range starts at 1")))
}
}
#[cfg(feature = "arbitrary")]
#[cfg_attr(docsrs, doc(cfg(feature = "arbitrary")))]
impl<'a> arbitrary::Arbitrary<'a> for JsonFloat {
#[inline]
fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
let val = u.arbitrary::<f64>()?;
// Wrap NaN, +Inf, -Inf into zero.
let val = if val.is_nan() {
0.0
} else if val.is_infinite() {
(0.0_f64).copysign(val)
} else {
val
};
Ok(Self(val))
}
}
#[cfg(test)]
mod tests {
use super::*;
use pretty_assertions::assert_eq;
#[test]
fn int_upper_limit_sanity_check() {
assert_eq!(JSON_INT_UPPER_LIMIT, (1 << 53) - 1);
assert_eq!(JSON_INT_UPPER_LIMIT, 9_007_199_254_740_991);
}
#[test]
fn int_lower_limit_sanity_check() {
assert_eq!(JSON_INT_LOWER_LIMIT, -(1 << 53) + 1);
assert_eq!(JSON_INT_LOWER_LIMIT, -9_007_199_254_740_991);
assert_eq!(JSON_INT_LOWER_LIMIT, -JSON_INT_UPPER_LIMIT);
}
#[test]
fn uint_upper_limit_sanity_check() {
assert_eq!(JSON_UINT_UPPER_LIMIT, (1 << 53) - 1);
assert_eq!(JSON_UINT_UPPER_LIMIT, 9_007_199_254_740_991);
assert_eq!(JSON_INT_UPPER_LIMIT, JSON_UINT_UPPER_LIMIT as i64);
}
#[test]
fn int_lower_limit_try_from_check() {
let min = JsonInt::try_from(JSON_INT_LOWER_LIMIT).expect("JSON int lower_limit should be convertible.");
let err = JsonInt::try_from(JSON_INT_LOWER_LIMIT - 1)
.expect_err("Values below JSON int lower_limit should not be convertible.");
assert_eq!(min.as_i64(), JSON_INT_LOWER_LIMIT);
assert_eq!(
err.to_string(),
"value -9007199254740992 is below the range of JsonInt values [-9007199254740991..9007199254740991]"
);
}
#[test]
fn int_upper_limit_try_from_check() {
let max = JsonInt::try_from(JSON_INT_UPPER_LIMIT).expect("JSON int upper_limit should be convertible.");
let err = JsonInt::try_from(JSON_INT_UPPER_LIMIT + 1)
.expect_err("Values in excess of JSON int upper_limit should not be convertible.");
assert_eq!(max.as_i64(), JSON_INT_UPPER_LIMIT);
assert_eq!(
err.to_string(),
"value 9007199254740992 is above the range of JsonInt values [-9007199254740991..9007199254740991]"
);
}
#[test]
fn uint_upper_limit_try_from_check() {
let max = JsonUInt::try_from(JSON_UINT_UPPER_LIMIT).expect("JSON uint upper_limit should be convertible.");
let err = JsonUInt::try_from(JSON_UINT_UPPER_LIMIT + 1)
.expect_err("Values in excess of JSON uint upper_limit should not be convertible.");
assert_eq!(max.as_u64(), JSON_UINT_UPPER_LIMIT);
assert_eq!(
err.to_string(),
"value 9007199254740992 is above the range of JsonUInt values [0..9007199254740991]"
);
}
#[test]
fn non_zero_uint_try_from_zero_check() {
let err_i32 = JsonNonZeroUInt::try_from(0_i32).expect_err("zero should not be convertible");
let err_u32 = JsonNonZeroUInt::try_from(0_u32).expect_err("zero should not be convertible");
let err_i64 = JsonNonZeroUInt::try_from(0_i64).expect_err("zero should not be convertible");
let err_u64 = JsonNonZeroUInt::try_from(0_u64).expect_err("zero should not be convertible");
assert_eq!(
err_i32.to_string(),
"attempt to convert a zero value into a JsonNonZeroUInt"
);
assert_eq!(
err_u32.to_string(),
"attempt to convert a zero value into a JsonNonZeroUInt"
);
assert_eq!(
err_i64.to_string(),
"attempt to convert a zero value into a JsonNonZeroUInt"
);
assert_eq!(
err_u64.to_string(),
"attempt to convert a zero value into a JsonNonZeroUInt"
);
}
#[test]
fn parse_int_from_empty() {
let err = JsonInt::from_str("").expect_err("empty string is not valid");
assert_eq!(
err.to_string(),
"string '' is not a valid representation of a JSON integer"
);
}
#[test]
fn parse_int_underflow() {
let err = JsonInt::from_str("-9007199254740992").expect_err("out of range");
assert_eq!(
err.to_string(),
"string '-9007199254740992' represents a value below the range of JsonInt values [-9007199254740991..9007199254740991]"
);
}
#[test]
fn parse_int_overflow() {
let err = JsonInt::from_str("9007199254740992").expect_err("out of range");
assert_eq!(
err.to_string(),
"string '9007199254740992' represents a value above the range of JsonInt values [-9007199254740991..9007199254740991]"
);
}
#[test]
fn parse_int_from_invalid_characters() {
let err = JsonInt::from_str("42+7").expect_err("not a valid integer");
assert_eq!(
err.to_string(),
"string '42+7' is not a valid representation of a JSON integer"
);
}
#[test]
fn parse_uint_from_empty() {
let err = JsonUInt::from_str("").expect_err("empty string is not valid");
assert_eq!(
err.to_string(),
"string '' is not a valid representation of a JSON integer"
);
}
#[test]
fn parse_uint_from_negative() {
let err = JsonUInt::from_str("-42").expect_err("out of range");
assert_eq!(
err.to_string(),
"string '-42' represents a value below the range of JsonUInt values [0..9007199254740991]"
);
}
#[test]
fn parse_uint_overflow() {
let err = JsonUInt::from_str("9007199254740992").expect_err("out of range");
assert_eq!(
err.to_string(),
"string '9007199254740992' represents a value above the range of JsonUInt values [0..9007199254740991]"
);
}
#[test]
fn parse_uint_from_invalid_characters() {
let err = JsonUInt::from_str("42+7").expect_err("not a valid integer");
assert_eq!(
err.to_string(),
"string '42+7' is not a valid representation of a JSON integer"
);
}
#[test]
fn parse_non_zero_uint_from_zero() {
let err = JsonNonZeroUInt::from_str("0").expect_err("not a non-zero integer");
assert_eq!(
err.to_string(),
"string '0' represents a zero value, which is not a valid JsonNonZeroUInt"
)
}
#[test]
fn convert_large_float_to_int() {
let float = JsonFloat::try_from(1e15).unwrap();
let int = JsonInt::try_from(float).expect("should succeed");
assert_eq!(int.as_i64(), 1_000_000_000_000_000);
}
mod json_float_parse {
use super::*;
use pretty_assertions::assert_eq;
use test_case::test_case;
#[allow(clippy::approx_constant)] // Detects 3.14 as PI, that's not we want for tests.
#[test_case("0.0", 0.0; "0d0")]
#[test_case("0.0e+000000000000000000000", 0.0; "0d0ep000000000000000000000")]
#[test_case("0.0E+000000000000000000000", 0.0; "0d0Uep000000000000000000000")]
#[test_case("-0.0", -0.0; "m0d0")]
#[test_case("3.14", 3.14; "3d142")]
#[test_case("-3.14", -3.14; "m3d142")]
#[test_case("3.14159265358979323846264338327950288", std::f64::consts::PI; "pi")]
#[test_case("-3.00000000000000000000000000000000000000000000000", -3.0; "m3d00000000000000000000000000000000000000000000000")]
#[test_case("-3.14e53", -3.14e53; "m3d14e53")]
#[test_case("-3.14e+53", -3.14e53; "m3d14ep53")]
#[test_case("-3.14e-53", -3.14e-53; "m3d14em53")]
#[test_case("-3.14e-153", -3.14e-153; "m3d14em153")]
#[test_case("42", 42.0; "42")]
fn valid_float_string(str: &str, expected: f64) {
let float = JsonFloat::from_str(str).expect("should parse");
assert_eq!(float.as_f64(), expected);
}
#[test_case("abc")]
#[test_case("0xFF")]
#[test_case("3,14")]
#[test_case("3.14F-20")]
#[test_case("3.3.3")]
#[test_case(".")]
#[test_case(".e30"; "de30")]
#[test_case("e30")]
fn invalid_float_strings_that_even_rust_rejects(str: &str) {
let err = JsonFloat::from_str(str).expect_err("should not parse");
let expected = format!("string '{str}' is not a valid representation of a float");
assert_eq!(err.to_string(), expected);
}
#[test_case("nan"; "nan lowercase")]
#[test_case("NaN"; "NaN mixed case")]
#[test_case("NAN"; "NAN uppercase")]
#[test_case("-nan"; "minus nan lowercase")]
#[test_case("-NaN"; "minus nan mixed case")]
#[test_case("-NAN"; "minus nan uppercase")]
#[test_case("inf"; "inf")]
#[test_case("Inf"; "inf mixed case")]
#[test_case("INF"; "inf uppercase")]
#[test_case("-inf"; "minus inf")]
#[test_case("-Inf"; "minus inf mixed case")]
#[test_case("-INF"; "minus inf uppercase")]
#[test_case("infinity"; "infinity mixed case")]
#[test_case("Infinity"; "infinity")]
#[test_case("INFINITY"; "infinity uppercase")]
#[test_case("-infinity"; "minus infinity")]
#[test_case("-Infinity"; "minus infinity mixed case")]
#[test_case("-INFINITY"; "minus infinity uppercase")]
fn invalid_float_strings_infinity_or_nan(str: &str) {
let err = JsonFloat::from_str(str).expect_err("should not parse");
let expected = format!("string '{str}' is not a valid JsonFloat as it is not a finite number");
assert_eq!(err.to_string(), expected);
}
#[test_case(".14"; "d14")]
#[test_case("-.14"; "md14")]
#[test_case(".0")]
#[test_case(".14e53")]
#[test_case(".00000e53")]
fn invalid_float_strings_nothing_before_decimal_point(str: &str) {
let err = JsonFloat::from_str(str).expect_err("should not parse");
let expected = format!("missing digits before the decimal point in '{str}'");
assert_eq!(err.to_string(), expected);
}
#[test_case("14."; "14d")]
#[test_case("-14."; "m14d")]
#[test_case("-0.")]
#[test_case("14.e53")]
#[test_case("0.e53")]
fn invalid_float_strings_nothing_after_decimal_point(str: &str) {
let err = JsonFloat::from_str(str).expect_err("should not parse");
let expected = format!("missing digits after the decimal point in '{str}'");
assert_eq!(err.to_string(), expected);
}
#[test_case("+3.14")]
#[test_case("+3.14e53")]
fn invalid_float_strings_leading_plus_sign(str: &str) {
let err = JsonFloat::from_str(str).expect_err("should not parse");
let expected = format!("string '{str}' includes a leading plus sign");
assert_eq!(err.to_string(), expected);
}
#[test_case("00.0"; "00d0")]
#[test_case("-00.0"; "m00d0")]
#[test_case("00"; "00")]
#[test_case("00000000000")]
#[test_case("-00"; "m00")]
#[test_case("-00000000000"; "m00000000000")]
#[test_case("03.14"; "03d14")]
#[test_case("-03.14"; "m03d14")]
#[test_case("03e14"; "03e14")]
#[test_case("-03e14"; "m03e14")]
#[test_case("00e14"; "00e14")]
#[test_case("-00e14"; "m00e14")]
fn invalid_float_strings_leading_zeros(str: &str) {
let err = JsonFloat::from_str(str).expect_err("should not parse");
let expected = format!("string '{str}' includes leading zeros");
assert_eq!(err.to_string(), expected);
}
}
mod proptests {
use super::super::*;
use proptest::prelude::*;
proptest! {
#[test]
fn int_roundtrip(value in JSON_INT_LOWER_LIMIT..JSON_INT_UPPER_LIMIT) {
let json_int = JsonInt::try_from(value).expect("within range");
assert_eq!(json_int.as_i64(), value);
}
#[test]
fn uint_roundtrip(value in 0..JSON_UINT_UPPER_LIMIT) {
let json_uint = JsonUInt::try_from(value).expect("within range");
assert_eq!(json_uint.as_u64(), value);
}
#[test]
fn int_string_roundtrip(value in JSON_INT_LOWER_LIMIT..JSON_INT_UPPER_LIMIT) {
let string = value.to_string();
let json_int = JsonInt::from_str(&string).expect("valid string");
assert_eq!(string, json_int.to_string())
}
#[test]
fn uint_string_roundtrip(value in 0..JSON_UINT_UPPER_LIMIT) {
let string = value.to_string();
let json_int = JsonUInt::from_str(&string).expect("valid string");
assert_eq!(string, json_int.to_string())
}
#[test]
fn int_increment(value in JSON_INT_LOWER_LIMIT..(JSON_INT_UPPER_LIMIT - 1)) {
let mut json_int = JsonInt::try_from(value).expect("within range");
json_int.try_increment().expect("at most one below limit");
assert_eq!(json_int.as_i64(), value + 1);
}
#[test]
fn uint_increment(value in 0..(JSON_UINT_UPPER_LIMIT - 1)) {
let mut json_uint = JsonUInt::try_from(value).expect("within range");
json_uint.try_increment().expect("at most one below limit");
assert_eq!(json_uint.as_u64(), value + 1);
}
}
}
}