1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
extern crate sodiumoxide;
extern crate libc;

extern crate rpassword;
extern crate base64;

use sodiumoxide::crypto::pwhash::*;
use sodiumoxide::crypto::pwhash;
use sodiumoxide::crypto::sign::*;
use sodiumoxide::crypto::sign;
use sodiumoxide::randombytes::randombytes;


use std::fs::File;
use std::io::{self, BufWriter, Write};


pub mod parse_args;
pub mod generichash;
pub mod perror;
pub mod types;

pub use generichash::*;
pub use parse_args::*;
pub use perror::*;
pub use types::*;


pub fn gen_keystruct() -> (PubkeyStruct, SeckeyStruct) {
    let (pk, sk) = gen_keypair();
    let SecretKey(sk) = sk;
    let PublicKey(pk) = pk;

    let keynum_vec = randombytes(KEYNUMBYTES);
    let mut keynum = [0u8; KEYNUMBYTES];
    keynum.copy_from_slice(keynum_vec.as_slice());

    let kdf_salt_vec = randombytes(SALTBYTES);
    let mut kdf_salt = [0u8; SALTBYTES];
    kdf_salt.copy_from_slice(kdf_salt_vec.as_slice());

    let OpsLimit(ops_limit) = OPSLIMIT_SENSITIVE;
    let MemLimit(mem_limit) = MEMLIMIT_SENSITIVE;

    let p_struct = PubkeyStruct {
        sig_alg: SIGALG,
        keynum_pk: KeynumPK {
            keynum: keynum,
            pk: pk,
        },
    };
    let s_struct = SeckeyStruct {
        sig_alg: SIGALG,
        kdf_alg: KDFALG,
        chk_alg: CHKALG,
        kdf_salt: kdf_salt,
        kdf_opslimit_le: store_usize_le(ops_limit),
        kdf_memlimit_le: store_usize_le(mem_limit),
        keynum_sk: KeynumSK {
            keynum: keynum.clone(),
            sk: sk,
            chk: [0; BYTES],
        },
    };
    (p_struct, s_struct)
}

pub fn get_password(prompt: &str) -> Result<String> {
    let pwd = rpassword::prompt_password_stdout(prompt)?;
    if pwd.len() == 0 {
        println!("<empty>");
        Ok(pwd)
    } else if pwd.len() > PASSWORDMAXBYTES {
        Err(PError::new(ErrorKind::Misc, "passphrase can't exceed 1024 bytes lenght"))
    } else {
        Ok(pwd)
    }
}

pub fn store_usize_le(x: usize) -> [u8; 8] {
    let b1: u8 = (x & 0xff) as u8;
    let b2: u8 = ((x >> 8) & 0xff) as u8;
    let b3: u8 = ((x >> 16) & 0xff) as u8;
    let b4: u8 = ((x >> 24) & 0xff) as u8;
    let b5: u8 = ((x >> 32) & 0xff) as u8;
    let b6: u8 = ((x >> 40) & 0xff) as u8;
    let b7: u8 = ((x >> 48) & 0xff) as u8;
    let b8: u8 = ((x >> 56) & 0xff) as u8;
    return [b1, b2, b3, b4, b5, b6, b7, b8];
}

pub fn load_usize_le(x: &[u8]) -> usize {
    (x[0] as usize) | (x[1] as usize) << 8 | (x[2] as usize) << 16 | (x[3] as usize) << 24 |
    (x[4] as usize) << 32 | (x[5] as usize) << 40 |
    (x[6] as usize) << 48 | (x[7] as usize) << 56
}
pub fn verify(pk_key: PubkeyStruct,
              sig: SigStruct,
              global_sig: &[u8],
              trusted_comment: &[u8],
              message: &[u8],
              quiet: bool,
              output: bool)
              -> Result<()> {

    if sig.keynum != pk_key.keynum_pk.keynum {
        return Err(PError::new(ErrorKind::Verify,
                               format!("Signature key id: {:X} is different from public key: {:X}",
                                       load_usize_le(&sig.keynum[..]),
                                       load_usize_le(&pk_key.keynum_pk.keynum[..]))));
    }
    Signature::from_slice(&sig.sig)
        .ok_or(PError::new(ErrorKind::Verify,
                           "Couldn't compose message file signature from bytes"))
        .and_then(|signature| {
            PublicKey::from_slice(&pk_key.keynum_pk.pk)
                .ok_or(PError::new(ErrorKind::Verify,
                                   "Couldn't compose a public key from bytes"))
                .and_then(|pk| if sign::verify_detached(&signature, &message, &pk) {
                              Ok(pk)
                          } else {
                              Err(PError::new(ErrorKind::Verify, "Signature verification failed"))
                          })
                .and_then(|pk| {
                    Signature::from_slice(&global_sig[..])
                        .ok_or(PError::new(ErrorKind::Verify,
                                           "Couldn't compose trusted comment signature from bytes"))
                        .and_then(|global_sig| if sign::verify_detached(&global_sig,
                                                                        &trusted_comment,
                                                                        &pk) {
                                      let just_comment =
                                          String::from_utf8(trusted_comment[SIGNATUREBYTES..]
                                                                .to_vec())?;
                                      if !quiet {
                                          println!("Signature and comment signature verified");
                                          println!("Trusted comment: {}", just_comment);
                                      }
                                      if output {
                                          print!("{}", String::from_utf8_lossy(&message[..]));
                                      }
                                      Ok(())
                                  } else {
                                      return Err(PError::new(ErrorKind::Verify,
                                                             "Comment signature verification \
                                                              failed"));
                                  })
                })
        })
}

pub fn sign<W>(sk_key: SeckeyStruct,
            pk_key: Option<PubkeyStruct>,
            mut sig_buf: W,
            message: &[u8],
            hashed: bool,
            trusted_comment: &str,
            untrusted_comment: &str)
            -> Result<()>
    where W: Write            
{

    let mut sig_str = SigStruct::default();
    if !hashed {
        sig_str.sig_alg = sk_key.sig_alg.clone();
    } else {
        sig_str.sig_alg = SIGALG_HASHED;
    }
    sig_str
        .keynum
        .copy_from_slice(&sk_key.keynum_sk.keynum[..]);

    let sk = SecretKey::from_slice(&sk_key.keynum_sk.sk)
        .ok_or(PError::new(ErrorKind::Sign, "Couldn't generate secret key from bytes"))?;

    let signature = sodiumoxide::crypto::sign::sign_detached(message, &sk);

    sig_str.sig.copy_from_slice(&signature[..]);

    let mut sig_and_trust_comment: Vec<u8> = vec![];
    sig_and_trust_comment.extend(sig_str.sig.iter());
    sig_and_trust_comment.extend(trusted_comment.as_bytes().iter());

    let global_sig = sodiumoxide::crypto::sign::sign_detached(&sig_and_trust_comment, &sk);

    if let Some(pk_str) = pk_key {
        PublicKey::from_slice(&pk_str.keynum_pk.pk[..])
            .ok_or(PError::new(ErrorKind::Sign, "failed to obtain public key from bytes"))
            .and_then(|pk|{
                   if !sodiumoxide::crypto::sign::verify_detached(&global_sig, &sig_and_trust_comment, &pk) {
                       Err(PError::new(ErrorKind::Verify,format!("Could not verify signature with the \
                        provided public key ID: {:X}", load_usize_le(&pk_str.keynum_pk.keynum[..]))))
                    } else {
                        println!("\nSignature checked with the public key ID: {:X}",
                                load_usize_le(&pk_str.keynum_pk.keynum[..]));
                                Ok(())
                    } 
            })?;
    }

    writeln!(sig_buf, "{}", untrusted_comment)?;
    writeln!(sig_buf, "{}", base64::encode(&sig_str.bytes()))?;
    writeln!(sig_buf, "{}{}", TRUSTED_COMMENT_PREFIX, trusted_comment)?;
    writeln!(sig_buf, "{}", base64::encode(&global_sig[..]))?;
    sig_buf.flush()?;
    Ok(())
}

pub fn generate(mut pk_file: BufWriter<File>,
                mut sk_file: BufWriter<File>,
                comment: Option<&str>)
                -> Result<(PubkeyStruct, SeckeyStruct)> {
    let (pk_str, mut sk_str) = gen_keystruct();
    sk_str
        .write_checksum()
        .map_err(|_| PError::new(ErrorKind::Generate, "failed to hash and write checksum!"))?;
    write!(io::stdout(),
           "Please enter a password to protect the secret key.\n")?;
    let pwd = get_password("Password: ")?;
    let pwd2 = get_password("Password (one more time): ")?;
    if pwd != pwd2 {
        return Err(PError::new(ErrorKind::Generate, "passwords don't match!"));
    }

    write!(io::stdout(),
           "Deriving a key from the password in order to encrypt the secret key... ")
            .map_err(|e| PError::new(ErrorKind::Io, e))
            .and_then(|_| {
                          io::stdout().flush()?;
                          derive_and_crypt(&mut sk_str, &pwd.as_bytes())
                      })
            .and(writeln!(io::stdout(), "done").map_err(|e| PError::new(ErrorKind::Io, e)))?;


    write!(pk_file, "{}rsign public key: ", COMMENT_PREFIX)?;
    writeln!(pk_file, "{:X}", load_usize_le(&pk_str.keynum_pk.keynum[..]))?;
    writeln!(pk_file, "{}", base64::encode(&pk_str.bytes()))?;
    pk_file.flush()?;


    write!(sk_file, "{}", COMMENT_PREFIX)?;
    if let Some(comment) = comment {
        writeln!(sk_file, "{}", comment)?;
    } else {
        writeln!(sk_file, "{}", SECRETKEY_DEFAULT_COMMENT)?;
    }
    writeln!(sk_file, "{}", base64::encode(&sk_str.bytes()))?;
    sk_file.flush()?;

    Ok((pk_str, sk_str))
}

pub fn derive_and_crypt(sk_str: &mut SeckeyStruct, pwd: &[u8]) -> Result<()> {
    let mut stream = [0u8; BYTES + SECRETKEYBYTES + KEYNUMBYTES];
    pwhash::Salt::from_slice(&sk_str.kdf_salt)
        .ok_or(PError::new(ErrorKind::Misc, "failed to generate Salt from random bytes"))
        .and_then(|salt| {

            pwhash::derive_key(&mut stream,
                               &pwd,
                               &salt,
                               OpsLimit(load_usize_le(&sk_str.kdf_opslimit_le)),
                               MemLimit(load_usize_le(&sk_str.kdf_memlimit_le)))
                    .map_err(|_| PError::new(ErrorKind::Misc, "failed to derive key from password"))

        })?;
    sk_str.xor_keynum(&stream);
    Ok(())
}

#[cfg(test)]
mod tests {

    #[test]
    fn byte_array_store() {
        use store_usize_le;
        assert_eq!([0xFF, 0, 0, 0, 0, 0, 0, 0], store_usize_le(0xFF));
    }
    #[test]
    fn byte_array_load() {
        use load_usize_le;
        assert_eq!(255, load_usize_le(&[0xFF, 0, 0, 0, 0, 0, 0, 0]));
    }

    #[test]
    fn pk_key_struct_conversion() {
        use gen_keystruct;
        use PubkeyStruct;
        let (pk, _) = gen_keystruct();
        assert_eq!(pk, PubkeyStruct::from(&pk.bytes()).unwrap());
    }
    #[test]
    fn sk_key_struct_conversion() {
        use gen_keystruct;
        use SeckeyStruct;
        let (_, sk) = gen_keystruct();
        assert_eq!(sk, SeckeyStruct::from(&sk.bytes()).unwrap());
    }

    #[test]
    fn xor_keynum() {
        use randombytes;
        use gen_keystruct;
        let (_, mut sk) = gen_keystruct();
        let key = randombytes(sk.keynum_sk.len());
        let original_keynum = sk.keynum_sk.clone();
        sk.xor_keynum(&key);
        assert_ne!(original_keynum, sk.keynum_sk);
        sk.xor_keynum(&key);
        assert_eq!(original_keynum, sk.keynum_sk);

    }
    #[test]
    fn sk_checksum() {
        use gen_keystruct;
        let (_, mut sk) = gen_keystruct();
        assert!(sk.write_checksum().is_ok());
        assert_eq!(sk.keynum_sk.chk.to_vec(), sk.read_checksum().unwrap());

    }
}