rs_sci/complex.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
use std::fmt::{Display, Formatter, Result as FmtResult};
use std::ops::{Add, Div, Mul, Neg, Sub};
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct Complex<T> {
re: T,
im: T,
}
impl<T> Complex<T> {
/// creates new complex number from real and imaginary parts
///
/// #### Example
/// ```txt
/// let z = Complex::new(3.0, 4.0); // 3 + 4i
/// ```
/// ---
/// basic constructor for complex numbers
pub fn new(re: T, im: T) -> Self {
Self { re, im }
}
}
impl<T: Copy> Complex<T> {
pub fn re(&self) -> T {
self.re
}
pub fn im(&self) -> T {
self.im
}
}
impl Complex<f64> {
/// calculates absolute value (modulus) of complex number
///
/// #### Example
/// ```txt
/// let z = Complex::new(3.0, 4.0);
/// assert_eq!(z.modulus(), 5.0);
/// ```
/// ---
/// computes √(re² + im²)
pub fn modulus(&self) -> f64 {
(self.re * self.re + self.im * self.im).sqrt()
}
/// calculates argument (phase) of complex number
///
/// #### Example
/// ```txt
/// let z = Complex::new(1.0, 1.0);
/// assert_eq!(z.argument(), std::f64::consts::PI/4.0);
/// ```
/// ---
/// returns angle in radians from positive real axis
pub fn argument(&self) -> f64 {
self.im.atan2(self.re)
}
/// returns complex conjugate
///
/// #### Example
/// ```txt
/// let z = Complex::new(3.0, 4.0);
/// let conj = z.conjugate(); // 3 - 4i
/// ```
/// ---
/// negates imaginary part while keeping real part
pub fn conjugate(&self) -> Self {
Self::new(self.re, -self.im)
}
/// computes exponential of complex number
///
/// #### Example
/// ```txt
/// let z = Complex::I * std::f64::consts::PI;
/// let exp_z = z.exp(); // ≈ -1 + 0i
/// ```
/// ---
/// uses euler's formula: e^(a+bi) = e^a(cos(b) + i*sin(b))
pub fn exp(&self) -> Self {
let r = self.re.exp();
Self::new(r * self.im.cos(), r * self.im.sin())
}
/// computes natural logarithm of complex number
///
/// #### Example
/// ```txt
/// let z = Complex::new(1.0, 0.0);
/// let ln_z = z.ln(); // 0 + 0i
/// ```
/// ---
/// returns ln|z| + i*arg(z)
pub fn ln(&self) -> Self {
Complex::new(self.modulus().ln(), self.argument())
}
/// raises complex number to real power
///
/// #### Example
/// ```txt
/// let z = Complex::new(1.0, 1.0);
/// let z_squared = z.pow(2.0);
/// ```
/// ---
/// uses polar form for computation
pub fn pow(&self, n: f64) -> Self {
let r = self.modulus().powf(n);
let theta = self.argument() * n;
Self::new(r * theta.cos(), r * theta.sin())
}
/// calculates square root of complex number
///
/// #### Example
/// ```txt
/// let z = Complex::new(-1.0, 0.0);
/// let sqrt_z = z.sqrt(); // 0 + 1i
/// ```
/// ---
/// returns principal square root
pub fn sqrt(&self) -> Self {
let r = self.modulus().sqrt();
let theta = self.argument() / 2.0;
Self::new(r * theta.cos(), r * theta.sin())
}
pub fn sin(&self) -> Self {
Self::new(
self.re.sin() * self.im.cosh(),
self.re.cos() * self.im.sinh(),
)
}
pub fn cos(&self) -> Self {
Self::new(
self.re.cos() * self.im.cosh(),
-self.re.sin() * self.im.sinh(),
)
}
pub fn tan(&self) -> Self {
self.sin() / self.cos()
}
pub fn sinh(&self) -> Self {
Self::new(
self.re.sinh() * self.im.cos(),
self.re.cosh() * self.im.sin(),
)
}
pub fn cosh(&self) -> Self {
Self::new(
self.re.cosh() * self.im.cos(),
self.re.sinh() * self.im.sin(),
)
}
pub fn tanh(&self) -> Self {
self.sinh() / self.cosh()
}
}
impl<T: Copy + Add<Output = T>> Add for Complex<T> {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
Self {
re: self.re + rhs.re,
im: self.im + rhs.im,
}
}
}
impl<T: Copy + Sub<Output = T>> Sub for Complex<T> {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
Self {
re: self.re - rhs.re,
im: self.im - rhs.im,
}
}
}
impl<T: Copy + Add<Output = T> + Sub<Output = T> + Mul<Output = T>> Mul for Complex<T> {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
Self {
re: self.re * rhs.re - self.im * rhs.im,
im: self.re * rhs.im + self.im * rhs.re,
}
}
}
impl<T: Copy + Add<Output = T> + Sub<Output = T> + Mul<Output = T> + Div<Output = T>> Div
for Complex<T>
{
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
let denom = rhs.re * rhs.re + rhs.im * rhs.im;
Self {
re: (self.re * rhs.re + self.im * rhs.im) / denom,
im: (self.im * rhs.re - self.re * rhs.im) / denom,
}
}
}
impl<T: Neg<Output = T>> Neg for Complex<T> {
type Output = Self;
fn neg(self) -> Self::Output {
Self::new(-self.re, -self.im)
}
}
impl<T: Display> Display for Complex<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
write!(f, "{}+{}i", self.re, self.im)
}
}
impl From<f64> for Complex<f64> {
fn from(x: f64) -> Self {
Self::new(x, 0.0)
}
}
impl From<i32> for Complex<f64> {
fn from(x: i32) -> Self {
Self::new(x as f64, 0.0)
}
}
impl Complex<f64> {
pub const I: Complex<f64> = Complex { re: 0.0, im: 1.0 };
pub const ONE: Complex<f64> = Complex { re: 1.0, im: 0.0 };
pub const ZERO: Complex<f64> = Complex { re: 0.0, im: 0.0 };
}
impl Complex<f64> {
/// creates complex number from polar coordinates
///
/// #### Example
/// ```txt
/// let z = Complex::from_polar(2.0, std::f64::consts::PI/4.0);
/// ```
/// ---
/// converts (r,θ) to x + yi form
pub fn from_polar(r: f64, theta: f64) -> Self {
Self::new(r * theta.cos(), r * theta.sin())
}
/// converts to polar coordinates
///
/// #### Example
/// ```txt
/// let z = Complex::new(1.0, 1.0);
/// let (r, theta) = z.to_polar();
/// ```
/// ---
/// returns tuple of (modulus, argument)
pub fn to_polar(&self) -> (f64, f64) {
(self.modulus(), self.argument())
}
}