1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
// Copyright (c) 2016, 2017 Frank Fischer <frank-fischer@shadow-soft.de> // // This program is free software: you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation, either version 3 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/> // //! General algorithms working on graphs. use graph::{Graph, Digraph, IndexGraph}; use builder::Builder; use std::collections::HashSet; use std::cmp::{min, max}; /// Returns the complement of `g`. /// /// # Example /// /// ``` /// use graph::{LinkedListGraph, Graph, Builder}; /// use graph::algorithms::complement; /// use graph::classes::cycle; /// use std::cmp::{min, max}; /// /// let g: LinkedListGraph = cycle(5); /// let h: LinkedListGraph = complement(&g); /// /// assert_eq!(h.num_nodes(), 5); /// assert_eq!(h.num_edges(), 5); /// /// let mut edges: Vec<_> = h.edges().map(|e| { /// let (u, v) = h.enodes(e); /// let (u, v) = (h.node_id(u), h.node_id(v)); /// (min(u,v), max(u,v)) /// }).collect(); /// edges.sort(); /// assert_eq!(edges, vec![(0,2), (0,3), (1,3), (1,4), (2,4)]); /// ``` /// /// Note that this function assumes that `g` is a simple graph (no /// loops or double edges). It will work on multi-graphs, too, but /// only adjacencies are respected, no multiplicities. pub fn complement<'g, 'h, G, H>(g: &'g G) -> H where G: IndexGraph<'g>, H: Graph<'h>, { let mut edges = HashSet::new(); for e in g.edges() { let (u, v) = g.enodes(e); edges.insert((min(g.node_id(u), g.node_id(v)), max(g.node_id(u), g.node_id(v)))); } let n = g.num_nodes(); let mut h = H::Builder::with_capacities(n, n * (n-1) / 2 - g.num_edges()); let nodes = h.add_nodes(n); for i in 0..n { for j in i..n { if i < j && !edges.contains(&(i, j)) { h.add_edge(nodes[i], nodes[j]); } } } h.to_graph() } /// Returns the inverse directed graph of `g`. /// /// For $G=(V,A)$ the returned graph is $G=(V,A')$ with /// $A' := \{(v,u) \colon (u,v) \in A\}$. /// /// # Example /// /// ``` /// use graph::{LinkedListGraph, Graph, Digraph, Builder}; /// use graph::algorithms::inverse; /// /// let mut g = LinkedListGraph::<usize>::new(); /// /// g.add_nodes(18); /// for u in g.nodes() { /// for v in g.nodes() { /// if g.node_id(v) > 0 && g.node_id(u) % g.node_id(v) == 0 { /// g.add_edge(u, v); /// } /// } /// } /// /// let h: LinkedListGraph = inverse(&g); /// assert_eq!(g.num_nodes(), h.num_nodes()); /// assert_eq!(g.num_edges(), h.num_edges()); /// for e in h.edges() { /// let (u,v) = (h.node_id(h.src(e)), h.node_id(h.snk(e))); /// assert!(u > 0 && v % u == 0); /// } /// ``` pub fn inverse<'g, 'h, G, H>(g: &'g G) -> H where G: Digraph<'g> + IndexGraph<'g>, H: Digraph<'h>, { let mut h = H::Builder::with_capacities(g.num_nodes(), g.num_edges()); let nodes = h.add_nodes(g.num_nodes()); for e in g.edges() { h.add_edge(nodes[g.node_id(g.snk(e))], nodes[g.node_id(g.src(e))]); } h.to_graph() } #[cfg(test)] mod tests { use {Graph, IndexGraph, LinkedListGraph}; use linkedlistgraph::Edge; use classes::*; use algorithms::complement; use std::cmp::{min, max}; #[test] fn test_complement() { let g: LinkedListGraph = cycle(5); let h: LinkedListGraph = complement(&g); let l: LinkedListGraph = complement(&h); fn to_id(g: &LinkedListGraph, e: Edge) -> (usize, usize) { let (u, v) = g.enodes(e); let (u, v) = (g.node_id(u), g.node_id(v)); (min(u, v), max(u, v)) } let mut gedges: Vec<_> = g.edges().map(|e| to_id(&g, e)).collect(); gedges.sort(); let mut hedges: Vec<_> = h.edges().map(|e| to_id(&h, e)).collect(); hedges.sort(); let mut ledges: Vec<_> = g.edges().map(|e| to_id(&l, e)).collect(); ledges.sort(); assert_eq!(hedges, vec![(0, 2), (0, 3), (1, 3), (1, 4), (2, 4)]); assert_eq!(gedges, ledges); } }