1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
use super::{intrinsic, r#ref::ContextRef, ContextBuilder, Intrinsic};
use crate::{markers::ParallelSend, qjs, runtime::AsyncRuntime, Ctx, Error, Result};
use std::{future::Future, mem, pin::Pin, ptr::NonNull};
mod future;
use future::WithFuture;
/// A macro for safely using an asynchronous context while capturing the environment.
///
/// # Usage
/// ```
/// # use rquickjs::{prelude::*, Function, async_with, AsyncRuntime, AsyncContext, Result};
/// # use std::time::Duration;
/// # async fn run(){
/// let rt = AsyncRuntime::new().unwrap();
/// let ctx = AsyncContext::full(&rt).await.unwrap();
///
/// // In order for futures to convert to JavaScript promises they need to return `Result`.
/// async fn delay<'js>(amount: f64, cb: Function<'js>) -> Result<()> {
/// tokio::time::sleep(Duration::from_secs_f64(amount)).await;
/// cb.call::<(), ()>(());
/// Ok(())
/// }
///
/// fn print(text: String) -> Result<()> {
/// println!("{}", text);
/// Ok(())
/// }
///
/// let mut some_var = 1;
/// // closure always moves, so create a ref.
/// let some_var_ref = &mut some_var;
/// async_with!(ctx => |ctx|{
///
/// // With the macro you can borrow the environment.
/// *some_var_ref += 1;
///
/// let delay = Function::new(ctx.clone(),Async(delay))
/// .unwrap()
/// .with_name("print")
/// .unwrap();
///
/// let global = ctx.globals();
/// global.set("print",Func::from(print)).unwrap();
/// global.set("delay",delay).unwrap();
/// ctx.eval::<(),_>(r#"
/// print("start");
/// delay(1,() => {
/// print("delayed");
/// })
/// print("after");
/// "#).unwrap();
/// }).await;
/// assert_eq!(some_var,2);
///
/// rt.idle().await
/// # }
/// ```
#[cfg_attr(feature = "doc-cfg", doc(cfg(feature = "futures")))]
#[macro_export]
macro_rules! async_with{
($context:expr => |$ctx:ident| { $($t:tt)* }) => {
$crate::AsyncContext::async_with(&$context,|$ctx| {
let fut = Box::pin(async move {
$($t)*
});
/// SAFETY: While rquickjs objects have a 'js lifetime attached to them,
/// they actually life much longer an the lifetime is just for checking
/// if they belong to the correct context.
/// By requiring that everything is moved into the closure outside
/// environments still can't life shorter than the closure.
/// This allows use to recast the future to a higher lifetime without problems.
/// Second, the future will always acquire a lock before running. The closure
/// enforces that everything moved into the future is send, but non of the
/// rquickjs objects are send so the future will never be send.
/// Since we acquire a lock before running the future and nothing can escape the closure
/// and future it is safe to recast the future as send.
unsafe fn uplift<'a,'b,R>(f: std::pin::Pin<Box<dyn std::future::Future<Output = R> + 'a>>) -> std::pin::Pin<Box<dyn std::future::Future<Output = R> + 'b + Send>>{
std::mem::transmute(f)
}
unsafe{ uplift(fut) }
})
};
}
pub(crate) struct Inner {
pub(crate) ctx: NonNull<qjs::JSContext>,
pub(crate) rt: AsyncRuntime,
}
impl Clone for Inner {
fn clone(&self) -> Inner {
let ctx = unsafe { NonNull::new_unchecked(qjs::JS_DupContext(self.ctx.as_ptr())) };
let rt = self.rt.clone();
Self { ctx, rt }
}
}
#[cfg(feature = "parallel")]
unsafe impl Send for Inner {}
impl Drop for Inner {
fn drop(&mut self) {
//TODO
let guard = match self.rt.inner.try_lock() {
Some(x) => x,
None => {
#[cfg(not(feature = "parallel"))]
{
let p = unsafe { &mut *(self.ctx.as_ptr() as *mut qjs::JSRefCountHeader) };
if p.ref_count <= 1 {
// Lock was poisoned, this should only happen on a panic.
// We should still free the context.
// TODO see if there is a way to recover from a panic which could cause the
// following assertion to trigger
assert!(std::thread::panicking());
}
unsafe { qjs::JS_FreeContext(self.ctx.as_ptr()) }
return;
}
#[cfg(feature = "parallel")]
{
self.rt
.drop_send
.send(self.ctx)
.expect("runtime should be alive while contexts life");
return;
}
}
};
guard.runtime.update_stack_top();
unsafe { qjs::JS_FreeContext(self.ctx.as_ptr()) }
// Explicitly drop the guard to ensure it is valid during the entire use of runtime
mem::drop(guard);
}
}
/// An asynchronous single execution context with its own global variables and stack.
///
/// Can share objects with other contexts of the same runtime.
#[cfg_attr(feature = "doc-cfg", doc(cfg(feature = "futures")))]
#[derive(Clone)]
pub struct AsyncContext(pub(crate) ContextRef<Inner>);
impl AsyncContext {
/// Create a async context form a raw context pointer.
///
/// # Safety
/// The context must be of the correct runtime.
/// The context must also have valid reference count, one which can be decremented when this
/// object is dropped without going negative.
pub unsafe fn from_raw(ctx: NonNull<qjs::JSContext>, rt: AsyncRuntime) -> Self {
AsyncContext(ContextRef::new(Inner { ctx, rt }))
}
/// Creates a base context with only the required functions registered.
/// If additional functions are required use [`AsyncContext::custom`],
/// [`AsyncContext::builder`] or [`AsyncContext::full`].
pub async fn base(runtime: &AsyncRuntime) -> Result<Self> {
Self::custom::<intrinsic::Base>(runtime).await
}
/// Creates a context with only the required intrinsics registered.
/// If additional functions are required use [`AsyncContext::custom`],
/// [`AsyncContext::builder`] or [`AsyncContext::full`].
pub async fn custom<I: Intrinsic>(runtime: &AsyncRuntime) -> Result<Self> {
let guard = runtime.inner.lock().await;
let ctx = NonNull::new(unsafe { qjs::JS_NewContextRaw(guard.runtime.rt.as_ptr()) })
.ok_or_else(|| Error::Allocation)?;
unsafe { I::add_intrinsic(ctx) };
let res = Inner {
ctx,
rt: runtime.clone(),
};
guard.drop_pending();
mem::drop(guard);
Ok(AsyncContext(ContextRef::new(res)))
}
/// Creates a context with all standard available intrinsics registered.
/// If precise control is required of which functions are available use
/// [`AsyncContext::custom`] or [`AsyncContext::builder`].
pub async fn full(runtime: &AsyncRuntime) -> Result<Self> {
let guard = runtime.inner.lock().await;
let ctx = NonNull::new(unsafe { qjs::JS_NewContext(guard.runtime.rt.as_ptr()) })
.ok_or_else(|| Error::Allocation)?;
let res = Inner {
ctx,
rt: runtime.clone(),
};
// Explicitly drop the guard to ensure it is valid during the entire use of runtime
guard.drop_pending();
mem::drop(guard);
Ok(AsyncContext(ContextRef::new(res)))
}
/// Create a context builder for creating a context with a specific set of intrinsics
pub fn builder() -> ContextBuilder<()> {
ContextBuilder::default()
}
pub async fn enable_big_num_ext(&self, enable: bool) {
let guard = self.0.rt.inner.lock().await;
guard.runtime.update_stack_top();
unsafe { qjs::JS_EnableBignumExt(self.0.ctx.as_ptr(), i32::from(enable)) }
// Explicitly drop the guard to ensure it is valid during the entire use of runtime
guard.drop_pending();
mem::drop(guard)
}
/// Returns the associated runtime
pub fn runtime(&self) -> &AsyncRuntime {
&self.0.rt
}
/// A entry point for manipulating and using JavaScript objects and scripts.
///
/// This function is rather limited in what environment it can capture. If you need to borrow
/// the environment in the closure use the [`async_with!`] macro.
///
/// Unfortunately it is currently impossible to have closures return a generic future which has a higher
/// rank trait bound lifetime. So, to allow closures to work, the closure must return a boxed
/// future.
pub fn async_with<F, R>(&self, f: F) -> WithFuture<F, R>
where
F: for<'js> FnOnce(Ctx<'js>) -> Pin<Box<dyn Future<Output = R> + 'js + Send>>
+ ParallelSend,
R: ParallelSend,
{
WithFuture::new(self, f)
}
/// A entry point for manipulating and using JavaScript objects and scripts.
///
/// This closure can't return a future, if you need to await JavaScript promises prefer the
/// [`async_with!`] macro.
pub async fn with<F, R>(&self, f: F) -> R
where
F: for<'js> FnOnce(Ctx<'js>) -> R + ParallelSend,
R: ParallelSend,
{
let guard = self.0.rt.inner.lock().await;
guard.runtime.update_stack_top();
let ctx = unsafe { Ctx::new_async(self) };
let res = f(ctx);
guard.drop_pending();
res
}
}
// Since the reference to runtime is behind a Arc this object is send
#[cfg(feature = "parallel")]
unsafe impl Send for AsyncContext {}
// Since all functions lock the global runtime lock access is synchronized so
// this object is sync
#[cfg(feature = "parallel")]
unsafe impl Sync for AsyncContext {}
#[cfg(test)]
mod test {
#[cfg(feature = "parallel")]
use crate::{AsyncContext, AsyncRuntime};
#[cfg(feature = "parallel")]
#[tokio::test]
async fn parallel_drop() {
use std::{
sync::{Arc, Barrier},
thread,
};
let wait_for_entry = Arc::new(Barrier::new(2));
let wait_for_exit = Arc::new(Barrier::new(2));
let rt = AsyncRuntime::new().unwrap();
let ctx_1 = AsyncContext::full(&rt).await.unwrap();
let ctx_2 = AsyncContext::full(&rt).await.unwrap();
let wait_for_entry_c = wait_for_entry.clone();
let wait_for_exit_c = wait_for_exit.clone();
thread::spawn(move || {
println!("wait_for entry ctx_1");
wait_for_entry_c.wait();
println!("dropping");
std::mem::drop(ctx_1);
println!("wait_for exit ctx_1");
wait_for_exit_c.wait();
});
println!("wait_for entry ctx_2");
rt.run_gc().await;
ctx_2
.with(|ctx| {
wait_for_entry.wait();
println!("evaling");
let i: i32 = ctx.eval("2 + 8").unwrap();
assert_eq!(i, 10);
println!("wait_for exit ctx_2");
wait_for_exit.wait();
})
.await;
}
}