1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
//! QuickJS runtime related types.
use super::{
raw::{Opaque, RawRuntime},
InterruptHandler, MemoryUsage,
};
#[cfg(feature = "allocator")]
use crate::allocator::Allocator;
#[cfg(feature = "loader")]
use crate::loader::{Loader, Resolver};
use crate::{result::JobException, Context, Error, Mut, Ref, Result, Weak};
use std::{ffi::CString, ptr::NonNull, result::Result as StdResult};
/// A weak handle to the runtime.
///
/// Holding onto this struct does not prevent the runtime from being dropped.
#[derive(Clone)]
#[repr(transparent)]
pub struct WeakRuntime(Weak<Mut<RawRuntime>>);
impl WeakRuntime {
pub fn try_ref(&self) -> Option<Runtime> {
self.0.upgrade().map(|inner| Runtime { inner })
}
}
/// QuickJS runtime, entry point of the library.
#[derive(Clone)]
#[repr(transparent)]
pub struct Runtime {
pub(crate) inner: Ref<Mut<RawRuntime>>,
}
impl Runtime {
/// Create a new runtime.
///
/// Will generally only fail if not enough memory was available.
///
/// # Features
/// *If the `"rust-alloc"` feature is enabled the Rust's global allocator will be used in favor of libc's one.*
pub fn new() -> Result<Self> {
let opaque = Opaque::new();
let rt = unsafe { RawRuntime::new(opaque) }.ok_or(Error::Allocation)?;
Ok(Self {
inner: Ref::new(Mut::new(rt)),
})
}
/// Create a new runtime using specified allocator
///
/// Will generally only fail if not enough memory was available.
#[cfg_attr(feature = "doc-cfg", doc(cfg(feature = "allocator")))]
#[cfg(feature = "allocator")]
pub fn new_with_alloc<A>(allocator: A) -> Result<Self>
where
A: Allocator + 'static,
{
let opaque = Opaque::new();
let rt = unsafe { RawRuntime::new_with_allocator(opaque, allocator) }
.ok_or(Error::Allocation)?;
Ok(Self {
inner: Ref::new(Mut::new(rt)),
})
}
/// Get weak ref to runtime
pub fn weak(&self) -> WeakRuntime {
WeakRuntime(Ref::downgrade(&self.inner))
}
/// Set a closure which is regularly called by the engine when it is executing code.
/// If the provided closure returns `true` the interpreter will raise and uncatchable
/// exception and return control flow to the caller.
#[inline]
pub fn set_interrupt_handler(&self, handler: Option<InterruptHandler>) {
unsafe {
self.inner.lock().set_interrupt_handler(handler);
}
}
/// Set the module loader
#[cfg(feature = "loader")]
#[cfg_attr(feature = "doc-cfg", doc(cfg(feature = "loader")))]
pub fn set_loader<R, L>(&self, resolver: R, loader: L)
where
R: Resolver + 'static,
L: Loader + 'static,
{
unsafe {
self.inner.lock().set_loader(resolver, loader);
}
}
/// Set the info of the runtime
pub fn set_info<S: Into<Vec<u8>>>(&self, info: S) -> Result<()> {
let string = CString::new(info)?;
unsafe {
self.inner.lock().set_info(string);
}
Ok(())
}
/// Set a limit on the max amount of memory the runtime will use.
///
/// Setting the limit to 0 is equivalent to unlimited memory.
///
/// Note that is a Noop when a custom allocator is being used,
/// as is the case for the "rust-alloc" or "allocator" features.
pub fn set_memory_limit(&self, limit: usize) {
unsafe {
self.inner.lock().set_memory_limit(limit);
}
}
/// Set a limit on the max size of stack the runtime will use.
///
/// The default values is 256x1024 bytes.
pub fn set_max_stack_size(&self, limit: usize) {
unsafe {
self.inner.lock().set_max_stack_size(limit);
}
}
/// Set a memory threshold for garbage collection.
pub fn set_gc_threshold(&self, threshold: usize) {
unsafe {
self.inner.lock().set_gc_threshold(threshold);
}
}
/// Manually run the garbage collection.
///
/// Most of QuickJS values are reference counted and
/// will automatically free themselves when they have no more
/// references. The garbage collector is only for collecting
/// cyclic references.
pub fn run_gc(&self) {
unsafe {
self.inner.lock().run_gc();
}
}
/// Get memory usage stats
pub fn memory_usage(&self) -> MemoryUsage {
unsafe { self.inner.lock().memory_usage() }
}
/// Test for pending jobs
///
/// Returns true when at least one job is pending.
#[inline]
pub fn is_job_pending(&self) -> bool {
self.inner.lock().is_job_pending()
}
/// Execute first pending job
///
/// Returns true when job was executed or false when queue is empty or error when exception thrown under execution.
#[inline]
pub fn execute_pending_job(&self) -> StdResult<bool, JobException> {
let mut lock = self.inner.lock();
lock.update_stack_top();
lock.execute_pending_job().map_err(|e| {
JobException(unsafe {
Context::from_raw(
NonNull::new(e).expect("QuickJS returned null ptr for job error"),
self.clone(),
)
})
})
}
}
// Since all functions which use runtime are behind a mutex
// sending the runtime to other threads should be fine.
#[cfg(feature = "parallel")]
unsafe impl Send for Runtime {}
#[cfg(feature = "parallel")]
unsafe impl Send for WeakRuntime {}
// Since a global lock needs to be locked for safe use
// using runtime in a sync way should be safe as
// simultaneous accesses is synchronized behind a lock.
#[cfg(feature = "parallel")]
unsafe impl Sync for Runtime {}
#[cfg(feature = "parallel")]
unsafe impl Sync for WeakRuntime {}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn base_runtime() {
let rt = Runtime::new().unwrap();
rt.set_info("test runtime").unwrap();
rt.set_memory_limit(0xFFFF);
rt.set_gc_threshold(0xFF);
rt.run_gc();
}
}