1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
// Copyright (c) 2017-2019 Rene van der Meer
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

//! Interface for the UART peripherals and any USB to serial adapters.
//!
//! RPPAL controls the Raspberry Pi's UART peripherals through the `ttyAMA0`
//! (PL011) and `ttyS0` (mini UART) character devices. USB to serial adapters
//! are controlled using the `ttyUSBx` and `ttyACMx` character devices.
//!
//! ## UART peripherals
//!
//! The Raspberry Pi's BCM283x SoC features two UART peripherals.
//! `/dev/ttyAMA0` represents the PL011 UART, which offers a full set of
//! features. `/dev/ttyS0` represents an auxiliary peripheral that's referred
//! to as mini UART, with limited capabilities. More details on the differences
//! between the PL011 and mini UART can be found in the official Raspberry Pi
//! [documentation].
//!
//! On earlier Raspberry Pi models without Bluetooth, `/dev/ttyAMA0` is
//! configured as a Linux serial console. On more recent models with Bluetooth
//! (3A+, 3B, 3B+, Zero W), `/dev/ttyAMA0` is connected to the Bluetooth
//! module, and `/dev/ttyS0` is used as a serial console instead. Due to the
//! limitations of `/dev/ttyS0` and the requirement for a fixed core frequency,
//! in most cases you'll want to use `/dev/ttyAMA0` for serial communication.
//!
//! By default, TX (outgoing data) is tied to BCM GPIO 14 (physical pin 8) and
//! RX (incoming data) is tied to BCM GPIO 15 (physical pin 10). You can move
//! these lines to different GPIO pins using the `uart0` and `uart1` overlays,
//! but the alternative pin options aren't exposed through the GPIO header on
//! any of the current Raspberry Pi models. They are only available on the
//! Compute Module's SO-DIMM pads.
//!
//! ## Configure `/dev/ttyAMA0` for serial communication (recommended)
//!
//! Disable the Linux serial console by either deactivating it through
//! `sudo raspi-config`, or manually removing the parameter
//! `console=serial0,115200` from `/boot/cmdline.txt`.
//!
//! Remove any lines containing `enable_uart=0` or `enable_uart=1` from
//! `/boot/config.txt`.
//!
//! On Raspberry Pi models with a Bluetooth module, an extra step is required
//! to either disable Bluetooth or move it to `/dev/ttyS0`, so `/dev/ttyAMA0`
//! becomes available for serial communication.
//!
//! To disable Bluetooth, add `dtoverlay=pi3-disable-bt` to `/boot/config.txt`.
//! You'll also need to disable the service that initializes Bluetooth with
//! `sudo systemctl disable hciuart`.
//!
//! To move the Bluetooth module to `/dev/ttyS0`, instead of disabling it with
//! the above-mentioned steps, add `dtoverlay=pi3-miniuart-bt` and
//! `core_freq=250` to `/boot/config.txt`.
//!
//! Remember to reboot the Raspberry Pi after making any changes.
//!
//! ## Configure `/dev/ttyS0` for serial communication
//!
//! If you prefer to leave the Bluetooth module connected to `/dev/ttyAMA0`,
//! you can configure `/dev/ttyS0` for serial communication instead.
//!
//! Disable the Linux serial console by either deactivating it through
//! `sudo raspi-config`, or manually removing the parameter
//! `console=serial0,115200` from `/boot/cmdline.txt`.
//!
//! Add the line `enable_uart=1` to `/boot/config.txt` to enable serial
//! communication on `/dev/ttyS0`, which also sets a fixed core frequency.
//!
//! Remember to reboot the Raspberry Pi after making any changes.
//!
//! ## USB to serial adapters
//!
//! In addition to controlling the hardware UART peripherals, [`Uart`] can
//! also be used for USB to serial adapters. Depending on the type of
//! device, these can be accessed either through `/dev/ttyUSBx` or
//! `/dev/ttyACMx`, where `x` is an index starting at `0`. The numbering is
//! based on the order in which the devices are discovered by the kernel.
//!
//! When you have multiple USB to serial adapters connected at the same time,
//! you can uniquely identify a specific device by searching for the relevant
//! symlink in the `/dev/serial/by-id` directory, or by adding your own
//! `udev` rules.
//!
//! Support for automatic software (XON/XOFF) and hardware (RTS/CTS) flow
//! control for USB to serial adapters depends on the USB interface IC on the
//! device, and the relevant Linux driver. Some ICs use an older,
//! incompatible RTS/CTS implementation, sometimes referred to as legacy or
//! simplex mode, where RTS is used to indicate data is about to be
//! transmitted, rather than to request the external device to resume its
//! transmission.
//!
//! ## Hardware flow control
//!
//! The RTS/CTS hardware flow control implementation supported by [`Uart`]
//! and used by the Raspberry Pi's UART peripherals requires RTS on one
//! device to be connected to CTS on the other device. The RTS signal is
//! used to request the other device to pause or resume its transmission.
//!
//! Some devices use an older, incompatible RTS/CTS implementation, sometimes
//! referred to as legacy or simplex mode, where RTS is connected to RTS, and
//! CTS to CTS. The RTS signal is used to indicate data is about to be
//! transmitted. [`Uart`] is not compatible with this implementation.
//! Connecting the Raspberry Pi's RTS and CTS pins incorrectly could damage
//! the Pi or the external device.
//!
//! When [`Uart`] is controlling a UART peripheral, enabling hardware flow
//! control will also configure the RTS and CTS pins. On Raspberry Pi models
//! with a 40-pin GPIO header, RTS is tied to BCM GPIO 17 (physical pin 11)
//! and CTS is tied to BCM GPIO 16 (physical pin 36). RTS and CTS aren't
//! available on models with a 26-pin header, except for the Raspberry Pi B
//! Rev 2, which exposes RTS and CTS through its unpopulated P5 header with
//! RTS on BCM GPIO 31 (physical pin 6) and CTS on BCM GPIO 30 (physical pin
//! 5).
//!
//! The RTS and CTS pins are reset to their original state when [`Uart`] goes
//! out of scope. Note that `drop` methods aren't called when a process is
//! abnormally terminated, for instance when a user presses <kbd>Ctrl</kbd> +
//! <kbd>C</kbd> and the `SIGINT` signal isn't caught, which prevents [`Uart`]
//! from resetting the pins. You can catch those using crates such as
//! [`simple_signal`].
//!
//! ## Troubleshooting
//!
//! ### Permission denied
//!
//! If [`new`] or [`with_path`] returns an `io::ErrorKind::PermissionDenied`
//! error, make sure the file permissions for the specified device are correct,
//! and the current user is a member of the group that owns the device, which is
//! usually either `dialout` or `tty`.
//!
//! [documentation]: https://www.raspberrypi.org/documentation/configuration/uart.md
//! [`simple_signal`]: https://crates.io/crates/simple-signal
//! [`Uart`]: struct.Uart.html
//! [`new`]: struct.Uart.html#method.new
//! [`with_path`]: struct.Uart.html#method.with_path

use std::error;
use std::fmt;
use std::fs::{self, File, OpenOptions};
use std::io;
use std::io::{Read, Write};
use std::os::unix::fs::OpenOptionsExt;
use std::os::unix::io::{AsRawFd, RawFd};
use std::path::Path;
use std::result;
use std::time::Duration;
use std::str;

use libc::{c_int, O_NOCTTY, O_NONBLOCK};
use libc::{TIOCM_CAR, TIOCM_CTS, TIOCM_DSR, TIOCM_DTR, TIOCM_RNG, TIOCM_RTS};

use crate::gpio::{self, Gpio, IoPin, Mode};
use crate::system::{self, DeviceInfo, Model};

#[cfg(feature = "hal")]
mod hal;
mod termios;

const GPIO_RTS: u8 = 17;
const GPIO_CTS: u8 = 16;

const GPIO_RTS_BREV2: u8 = 31;
const GPIO_CTS_BREV2: u8 = 30;

const GPIO_RTS_MODE_UART0: Mode = Mode::Alt3;
const GPIO_CTS_MODE_UART0: Mode = Mode::Alt3;

const GPIO_RTS_MODE_UART1: Mode = Mode::Alt5;
const GPIO_CTS_MODE_UART1: Mode = Mode::Alt5;

/// Errors that can occur when accessing the UART peripheral.
#[derive(Debug)]
pub enum Error {
    /// I/O error.
    Io(io::Error),
    /// GPIO error.
    Gpio(gpio::Error),
    /// Invalid or unsupported value.
    InvalidValue,
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Error::Io(ref err) => write!(f, "I/O error: {}", err),
            Error::Gpio(ref err) => write!(f, "GPIO error: {}", err),
            Error::InvalidValue => write!(f, "Invalid or unsupported value"),
        }
    }
}

impl error::Error for Error {}

impl From<io::Error> for Error {
    fn from(err: io::Error) -> Error {
        Error::Io(err)
    }
}

impl From<gpio::Error> for Error {
    fn from(err: gpio::Error) -> Error {
        Error::Gpio(err)
    }
}

impl From<system::Error> for Error {
    fn from(_err: system::Error) -> Error {
        Error::Gpio(gpio::Error::UnknownModel)
    }
}

/// Result type returned from methods that can have `uart::Error`s.
pub type Result<T> = result::Result<T, Error>;

/// Parity bit modes.
///
/// The parity bit mode determines how the parity bit is calculated.
///
/// `None` omits the parity bit. `Even` and `Odd` count the total number of
/// 1-bits in the data bits. `Mark` and `Space` always set the parity
/// bit to `1` or `0` respectively.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum Parity {
    /// No parity bit.
    None,
    /// Even parity.
    Even,
    /// Odd parity.
    Odd,
    /// Sets parity bit to `1`.
    Mark,
    /// Sets parity bit to `0`.
    Space,
}

impl fmt::Display for Parity {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Parity::None => write!(f, "None"),
            Parity::Even => write!(f, "Even"),
            Parity::Odd => write!(f, "Odd"),
            Parity::Mark => write!(f, "Mark"),
            Parity::Space => write!(f, "Space"),
        }
    }
}

/// Parity check modes.
///
/// The parity check mode determines how parity errors are handled.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum ParityCheck {
    /// Ignores parity errors.
    None,
    /// Removes bytes with parity errors from the input queue.
    Strip,
    /// Replaces bytes with parity errors with a `0` byte.
    Replace,
    /// Marks bytes with parity errors with a preceding `255` and `0` byte.
    ///
    /// Actual `255` bytes are replaced with two `255` bytes to avoid confusion
    /// with parity errors.
    Mark,
}

impl fmt::Display for ParityCheck {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            ParityCheck::None => write!(f, "None"),
            ParityCheck::Strip => write!(f, "Strip"),
            ParityCheck::Replace => write!(f, "Replace"),
            ParityCheck::Mark => write!(f, "Mark"),
        }
    }
}

/// Queue types.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum Queue {
    /// Input queue.
    Input,
    /// Output queue.
    Output,
    /// Both queues.
    Both,
}

impl fmt::Display for Queue {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Queue::Input => write!(f, "Input"),
            Queue::Output => write!(f, "Output"),
            Queue::Both => write!(f, "Both"),
        }
    }
}

/// Control signal status.
pub struct Status {
    tiocm: c_int,
}

impl Status {
    /// Returns `true` if RTS is active.
    ///
    /// RTS (active low) is controlled by [`Uart`]. An active signal indicates
    /// [`Uart`] is ready to receive more data.
    ///
    /// [`Uart`]: struct.Uart.html
    pub fn rts(&self) -> bool {
        self.tiocm & TIOCM_RTS > 0
    }

    /// Returns `true` if CTS is active.
    ///
    /// CTS (active low) is controlled by the external device. An active signal
    /// indicates the external device is ready to receive more data.
    pub fn cts(&self) -> bool {
        self.tiocm & TIOCM_CTS > 0
    }

    /// Returns `true` if DTR is active.
    ///
    /// DTR (active low) is controlled by [`Uart`]. When communicating with a
    /// modem, an active signal is used to place or accept a call. An inactive
    /// signal causes the modem to hang up. Other devices may use DTR and DSR
    /// for flow control.
    ///
    /// DTR is not supported by the Raspberry Pi's UART peripherals,
    /// but may be available on some USB to serial adapters.
    ///
    /// [`Uart`]: struct.Uart.html
    pub fn dtr(&self) -> bool {
        self.tiocm & TIOCM_DTR > 0
    }

    /// Returns `true` if DSR is active.
    ///
    /// DSR (active low) is controlled by the external device. When
    /// communicating with a modem, an active signal indicates the modem is
    /// ready for data transmission. Other devices may use DTR and DSR for flow
    /// control.
    ///
    /// DSR is not supported by the Raspberry Pi's UART peripherals,
    /// but may be available on some USB to serial adapters.
    pub fn dsr(&self) -> bool {
        self.tiocm & TIOCM_DSR > 0
    }

    /// Returns `true` if DCD is active.
    ///
    /// DCD (active low) is controlled by the external device. When
    /// communicating with a modem, an active signal indicates a connection is
    /// established.
    ///
    /// DCD is not supported by the Raspberry Pi's UART peripherals,
    /// but may be available on some USB to serial adapters.
    pub fn dcd(&self) -> bool {
        self.tiocm & TIOCM_CAR > 0
    }

    /// Returns `true` if RI is active.
    ///
    /// RI (active low) is controlled by the external device. When
    /// communicating with a modem, an active signal indicates an incoming
    /// call.
    ///
    /// RI is not supported by the Raspberry Pi's UART peripherals,
    /// but may be available on some USB to serial adapters.
    pub fn ri(&self) -> bool {
        self.tiocm & TIOCM_RNG > 0
    }
}

impl fmt::Debug for Status {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Status")
            .field("rts", &self.rts())
            .field("cts", &self.cts())
            .field("dtr", &self.dtr())
            .field("dsr", &self.dsr())
            .field("dcd", &self.dcd())
            .field("ri", &self.ri())
            .finish()
    }
}

#[derive(Debug)]
struct UartInner {
    device: File,
    fd: RawFd,
    rtscts_mode: Option<(Mode, Mode)>,
    rtscts_pins: Option<(IoPin, IoPin)>,
    blocking_read: bool,
    blocking_write: bool,
    baud_rate: u32,
    parity: Parity,
    parity_check: ParityCheck,
    data_bits: u8,
    stop_bits: u8,
    software_flow_control: bool,
    hardware_flow_control: bool,
}

/// Provides access to the Raspberry Pi's UART peripherals and any USB to
/// serial adapters.
///
/// The `embedded-hal` [`serial::Read`], [`serial::Write`] and [`blocking::serial::Write`] trait
/// implementations for `Uart` can be enabled by specifying the optional `hal` feature in the
/// dependency declaration for the `rppal` crate.
///
/// [`serial::Read`]: ../../embedded_hal/serial/trait.Read.html
/// [`serial::Write`]: ../../embedded_hal/serial/trait.Write.html
/// [`blocking::serial::Write`]: ../../embedded_hal/blocking/serial/trait.Write.html
#[derive(Debug)]
pub struct Uart {
    inner: UartInner,
}

impl Uart {
    /// Constructs a new `Uart`.
    ///
    /// `new` attempts to identify the UART peripheral tied to BCM GPIO 14 and
    /// 15, and then calls [`with_path`] with the appropriate device path.
    ///
    /// [`with_path`]: #method.with_path
    pub fn new(baud_rate: u32, parity: Parity, data_bits: u8, stop_bits: u8) -> Result<Uart> {
        Self::with_path("/dev/serial0", baud_rate, parity, data_bits, stop_bits)
    }

    /// Constructs a new `Uart` connected to the serial character device
    /// specified by `path`.
    ///
    /// `with_path` can be used to connect to either a UART peripheral or a USB
    ///
    /// to serial adapter.
    /// When a new `Uart` is constructed, the specified device is configured
    /// for non-canonical mode which processes input per character, ignores any
    /// special terminal input or output characters and disables local echo. DCD
    /// is ignored, all flow control is disabled, and the input and output queues
    /// are flushed.
    pub fn new_bt(baud_rate: u32, parity: Parity, data_bits: u8, stop_bits: u8) -> Result<Uart> {
        Self::with_path("/dev/rfcomm0", baud_rate, parity, data_bits, stop_bits)
    }

    /// bread and butter of setup, opens the path and makes sre it works,
    /// note that fir okuetooth no pins are modified
    /// this can be used to get custom paths.
    pub fn with_path<P: AsRef<Path>>(
        path: P,
        baud_rate: u32,
        parity: Parity,
        data_bits: u8,
        stop_bits: u8,
    ) -> Result<Uart> {
        // Follow symbolic links
        let path = fs::canonicalize(path)?;

        // Check if we're using /dev/ttyAMA0 or /dev/ttyS0 so we can set the
        // correct RTS/CTS pin modes when needed.
        let rtscts_mode = if let Some(path_str) = path.to_str() {
            match path_str {
                "/dev/ttyAMA0" => Some((GPIO_RTS_MODE_UART0, GPIO_CTS_MODE_UART0)),
                "/dev/ttyS0" => Some((GPIO_RTS_MODE_UART1, GPIO_CTS_MODE_UART1)),
                _ => None,
            }
        } else {
            None
        };

        let device = OpenOptions::new()
            .read(true)
            .write(true)
            .custom_flags(O_NOCTTY | O_NONBLOCK)
            .open(path)?;

        let fd = device.as_raw_fd();

        // Enables character input mode, disables echoing and any special
        // processing
        termios::set_raw_mode(fd)?;

        // Non-blocking reads
        termios::set_read_mode(fd, 0, Duration::default())?;

        // Ignore modem control lines (CLOCAL)
        termios::ignore_carrier_detect(fd)?;

        // Enable receiver (CREAD)
        termios::enable_read(fd)?;

        // Disable software flow control (XON/XOFF)
        termios::set_software_flow_control(fd, false, false)?;

        // Disable hardware flow control (RTS/CTS)
        termios::set_hardware_flow_control(fd, false)?;

        termios::set_line_speed(fd, baud_rate)?;
        termios::set_parity(fd, parity)?;
        termios::set_data_bits(fd, data_bits)?;
        termios::set_stop_bits(fd, stop_bits)?;

        // Pass through parity errors unfiltered
        termios::set_parity_check(fd, ParityCheck::None)?;

        // Flush the input and output queue
        termios::flush(fd, Queue::Both)?;

        Ok(Uart {
            inner: UartInner {
                device,
                fd,
                rtscts_mode,
                rtscts_pins: None,
                blocking_read: false,
                blocking_write: false,
                baud_rate,
                parity,
                parity_check: ParityCheck::None,
                data_bits,
                stop_bits,
                software_flow_control: false,
                hardware_flow_control: false,
            },
        })
    }

    /// Returns the line speed in baud (Bd).
    pub fn baud_rate(&self) -> u32 {
        self.inner.baud_rate
    }

    /// Sets the line speed in baud (Bd).
    ///
    /// On the Raspberry Pi, baud rate is equivalent to bit rate in bits per
    /// second (bit/s).
    ///
    /// Accepted values:
    /// `0`, `50`, `75`, `110`, `134`, `150`, `200`, `300`, `600`, `1_200`,
    /// `1_800`, `2_400`, `4_800`, `9_600`, `19_200`, `38_400`, `57_600`,
    /// `115_200`, `230_400`, `460_800`, `500_000`, `576_000`, `921_600`,
    /// `1_000_000`, `1_152_000`, `1_500_000`, `2_000_000`, `2_500_000`,
    /// `3_000_000`, `3_500_000`, `4_000_000`.
    ///
    /// Support for some values may be device-dependent.
    pub fn set_baud_rate(&mut self, baud_rate: u32) -> Result<()> {
        termios::set_line_speed(self.inner.fd, baud_rate)?;

        self.inner.baud_rate = baud_rate;

        Ok(())
    }

    /// Returns the parity bit mode.
    pub fn parity(&self) -> Parity {
        self.inner.parity
    }

    /// Sets the parity bit mode.
    ///
    /// The parity bit mode determines how the parity bit is calculated.
    ///
    /// Support for some modes may be device-dependent.
    pub fn set_parity(&mut self, parity: Parity) -> Result<()> {
        termios::set_parity(self.inner.fd, parity)?;

        self.inner.parity = parity;

        Ok(())
    }

    /// Returns the parity check mode for incoming data.
    pub fn parity_check(&self) -> ParityCheck {
        self.inner.parity_check
    }

    /// Configures parity checking for incoming data.
    ///
    /// The parity check mode determines how parity errors are handled.
    ///
    /// By default, `parity_check` is set to [`None`].
    ///
    /// Support for some modes may be device-dependent.
    ///
    /// [`None`]: enum.ParityCheck.html#variant.None
    pub fn set_parity_check(&mut self, parity_check: ParityCheck) -> Result<()> {
        termios::set_parity_check(self.inner.fd, parity_check)?;

        self.inner.parity_check = parity_check;

        Ok(())
    }

    /// Returns the number of data bits.
    pub fn data_bits(&self) -> u8 {
        self.inner.data_bits
    }

    /// Sets the number of data bits.
    ///
    /// Accepted values: `5`, `6`, `7`, `8`.
    ///
    /// Support for some values may be device-dependent.
    pub fn set_data_bits(&mut self, data_bits: u8) -> Result<()> {
        termios::set_data_bits(self.inner.fd, data_bits)?;

        self.inner.data_bits = data_bits;

        Ok(())
    }

    /// Returns the number of stop bits.
    pub fn stop_bits(&self) -> u8 {
        self.inner.stop_bits
    }

    /// Sets the number of stop bits.
    ///
    /// Accepted values: `1`, `2`.
    ///
    /// Support for some values may be device-dependent.
    pub fn set_stop_bits(&mut self, stop_bits: u8) -> Result<()> {
        termios::set_stop_bits(self.inner.fd, stop_bits)?;

        self.inner.stop_bits = stop_bits;

        Ok(())
    }

    /// Returns the status of the control signals.
    pub fn status(&self) -> Result<Status> {
        let tiocm = termios::status(self.inner.fd)?;

        Ok(Status { tiocm })
    }

    /// Sets DTR to active (`true`) or inactive (`false`).
    ///
    /// DTR is not supported by the Raspberry Pi's UART peripherals,
    /// but may be available on some USB to serial adapters.
    pub fn set_dtr(&mut self, dtr: bool) -> Result<()> {
        termios::set_dtr(self.inner.fd, dtr)
    }

    /// Sets RTS to active (`true`) or inactive (`false`).
    pub fn set_rts(&mut self, rts: bool) -> Result<()> {
        termios::set_rts(self.inner.fd, rts)
    }

    /// Returns `true` if XON/XOFF software flow control is enabled.
    pub fn software_flow_control(&self) -> bool {
        self.inner.software_flow_control
    }

    /// Enables or disables XON/XOFF software flow control.
    ///
    /// When software flow control is enabled, incoming XON (decimal 17) and
    /// XOFF (decimal 19) control characters are filtered from the input queue.
    /// When XOFF is received, the transmission of data in the output queue is
    /// paused until the external device sends XON. XOFF is automatically sent
    /// to the external device to prevent the input queue from overflowing.
    /// XON is sent when the input queue is ready for more data. You can also
    /// manually send these control characters by calling [`send_stop`] and
    /// [`send_start`].
    ///
    /// By default, software flow control is disabled.
    ///
    /// Support for XON/XOFF software flow control is
    /// device-dependent. You can manually implement XON/XOFF by disabling
    /// software flow control, parsing incoming XON/XOFF control characters
    /// received with [`read`], and sending XON/XOFF when needed using
    /// [`write`].
    ///
    /// [`send_start`]: #method.send_start
    /// [`send_stop`]: #method.send_stop
    /// [`read`]: #method.read
    /// [`write`]: #method.write
    pub fn set_software_flow_control(&mut self, software_flow_control: bool) -> Result<()> {
        termios::set_software_flow_control(
            self.inner.fd,
            software_flow_control,
            software_flow_control,
        )?;

        self.inner.software_flow_control = software_flow_control;

        Ok(())
    }

    /// Returns `true` if RTS/CTS hardware flow control is enabled.
    pub fn hardware_flow_control(&self) -> bool {
        self.inner.hardware_flow_control
    }

    /// Enables or disables RTS/CTS hardware flow control.
    ///
    /// When hardware flow control is enabled, the RTS line (active low) is
    /// automatically driven high to prevent the input queue from overflowing,
    /// and driven low when the input queue is ready for more data. When the
    /// CTS line (active low) is driven high by the external device, all data
    /// in the output queue is held until CTS is driven low. You can also
    /// manually change the active state of RTS by calling [`send_stop`] and
    /// [`send_start`].
    ///
    /// When `Uart` is controlling a UART peripheral, enabling hardware flow
    /// control will also configure the RTS and CTS pins.
    ///
    /// More information on hardware flow control can be found [here].
    ///
    /// By default, hardware flow control is disabled.
    ///
    /// Support for RTS/CTS hardware flow control is device-dependent. You can
    /// manually implement RTS/CTS using [`cts`], [`send_stop`] and
    /// [`send_start`], or by disabling hardware flow control and configuring
    /// an [`OutputPin`] for RTS and an [`InputPin`] for CTS.
    ///
    /// [here]: index.html#hardware-flow-control
    /// [`cts`]: struct.Status.html#method.cts
    /// [`send_start`]: #method.send_start
    /// [`send_stop`]: #method.send_stop
    /// [`OutputPin`]: ../gpio/struct.OutputPin.html
    /// [`InputPin`]: ../gpio/struct.InputPin.html
    pub fn set_hardware_flow_control(&mut self, hardware_flow_control: bool) -> Result<()> {
        if hardware_flow_control && self.inner.rtscts_pins.is_none() {
            // Configure and store RTS/CTS GPIO pins for UART0/UART1, so their
            // mode is automatically reset when Uart goes out of scope.
            if let Some((rts_mode, cts_mode)) = self.inner.rtscts_mode {
                let gpio = Gpio::new()?;

                let (gpio_rts, gpio_cts) = if DeviceInfo::new()?.model() == Model::RaspberryPiBRev2
                {
                    // The Pi B Rev 2 exposes RTS/CTS through its (unpopulated) P5 header
                    (GPIO_RTS_BREV2, GPIO_CTS_BREV2)
                } else {
                    // All other models with a 40-pin header use these GPIO pins
                    (GPIO_RTS, GPIO_CTS)
                };

                let pin_rts = gpio.get(gpio_rts)?.into_io(rts_mode);
                let pin_cts = gpio.get(gpio_cts)?.into_io(cts_mode);

                self.inner.rtscts_pins = Some((pin_rts, pin_cts));
            }
        } else if !hardware_flow_control {
            self.inner.rtscts_pins = None;
        }

        termios::set_hardware_flow_control(self.inner.fd, hardware_flow_control)?;

        self.inner.hardware_flow_control = hardware_flow_control;

        Ok(())
    }

    /// Requests the external device to pause its transmission using flow control.
    ///
    /// If software flow control is enabled, `send_stop`
    /// sends the XOFF control character.
    ///
    /// If hardware flow control is enabled, `send_stop` sets RTS to its
    /// inactive state.
    pub fn send_stop(&self) -> Result<()> {
        if self.inner.software_flow_control {
            termios::send_stop(self.inner.fd)?;
        }

        if self.inner.hardware_flow_control {
            termios::set_rts(self.inner.fd, false)?;
        }

        Ok(())
    }

    /// Requests the external device to resume its transmission using flow control.
    ///
    /// If software flow control is enabled, `send_start`
    /// sends the XON control character.
    ///
    /// If hardware flow control is enabled, `send_start` sets RTS to its
    /// active state.
    pub fn send_start(&self) -> Result<()> {
        if self.inner.software_flow_control {
            termios::send_start(self.inner.fd)?;
        }

        if self.inner.hardware_flow_control {
            termios::set_rts(self.inner.fd, true)?;
        }

        Ok(())
    }

    /// Returns `true` if [`read`] is configured to block when needed.
    ///
    /// [`read`]: #method.write
    pub fn is_read_blocking(&self) -> bool {
        self.inner.blocking_read
    }

    /// Returns `true` if [`write`] is configured to block when needed.
    ///
    /// [`write`]: #method.write
    pub fn is_write_blocking(&self) -> bool {
        self.inner.blocking_write
    }

    /// Sets the blocking mode for subsequent calls to [`read`].
    ///
    /// `min_length` indicates the minimum number of requested bytes. This
    /// value may differ from the actual buffer length. Maximum value: 255
    /// bytes.
    ///
    /// `timeout` indicates how long [`read`] blocks while waiting for
    /// incoming data. `timeout` uses a 0.1 second resolution. Maximum
    /// value: 25.5 seconds.
    ///
    /// [`read`] operates in one of four modes, depending on the specified
    /// `min_length` and `timeout` values:
    ///
    /// * **Non-blocking read** (`min_length` = 0, `timeout` = 0). [`read`]
    /// retrieves any available data and returns immediately.
    /// * **Blocking read** (`min_length` > 0, `timeout` = 0). [`read`] blocks
    /// until at least `min_length` bytes are available, or the provided buffer
    /// is full.
    /// * **Read with timeout** (`min_length` = 0, `timeout` > 0). [`read`]
    /// blocks until at least one byte is available, or the `timeout` duration
    /// elapses.
    /// * **Read with inter-byte timeout** (`min_length` > 0, `timeout` > 0).
    /// [`read`] blocks until at least `min_length` bytes are available, the
    /// provided buffer is full, or the `timeout` duration elapses
    /// after receiving one or more bytes. The timer is started after an
    /// initial byte becomes available, and is restarted after each additional
    /// byte. That means [`read`] will block indefinitely until at least one
    /// byte has been received.
    ///
    /// By default, [`read`] is configured as non-blocking.
    ///
    /// [`read`]: #method.read
    pub fn set_read_mode(&mut self, min_length: u8, timeout: Duration) -> Result<()> {
        termios::set_read_mode(self.inner.fd, min_length, timeout)?;

        self.inner.blocking_read = min_length > 0 || timeout.as_millis() > 0;

        // If both read() and write() are non-blocking, we can safely set
        // O_NONBLOCK once instead of toggling it for every write. We can't
        // leave it set when read() should block, because it ignores the
        // VMIN and VTIME settings.
        if self.inner.blocking_read || self.inner.blocking_write {
            unsafe {
                libc::fcntl(self.inner.fd, libc::F_SETFL, 0);
            }
        } else {
            unsafe {
                libc::fcntl(self.inner.fd, libc::F_SETFL, libc::O_NONBLOCK);
            }
        }

        Ok(())
    }

    /// Sets the blocking mode for subsequent calls to [`write`].
    ///
    /// [`write`] operates in one of two modes, depending on the specified
    /// `blocking` value:
    ///
    /// * **Non-blocking write**. [`write`] returns immediately after
    /// copying as much of the contents of the provided buffer to the output queue
    /// as it's able to fit.
    /// * **Blocking write**. [`write`] blocks until the entire contents of the provided buffer
    /// can be copied to the output queue. If flow control is enabled and the
    /// external device has sent a stop request, the transmission of any waiting data
    /// in the output queue is paused until a start request has been received.
    ///
    /// By default, [`write`] is configured as non-blocking.
    ///
    /// [`write`]: #method.write
    pub fn set_write_mode(&mut self, blocking: bool) -> Result<()> {
        self.inner.blocking_write = blocking;

        // If both read() and write() are non-blocking, we can safely set
        // O_NONBLOCK once instead of toggling it for every write. We can't
        // leave it set when read() should block, because it ignores the
        // VMIN and VTIME settings.
        if self.inner.blocking_read || self.inner.blocking_write {
            unsafe {
                libc::fcntl(self.inner.fd, libc::F_SETFL, 0);
            }
        } else {
            unsafe {
                libc::fcntl(self.inner.fd, libc::F_SETFL, libc::O_NONBLOCK);
            }
        }

        Ok(())
    }

    /// Returns the number of bytes waiting in the input queue.
    pub fn input_len(&self) -> Result<usize> {
        termios::input_len(self.inner.fd)
    }

    /// Returns the number of bytes waiting in the output queue.
    pub fn output_len(&self) -> Result<usize> {
        termios::output_len(self.inner.fd)
    }

    /// Receives incoming data from the external device and stores it in
    /// `buffer`.
    ///
    /// `read_bytes` operates in one of four (non)blocking modes, depending on the
    /// settings configured by [`set_read_mode`]. By default, `read` is configured
    /// as non-blocking.
    ///
    /// Returns how many bytes were read.
    ///
    /// [`set_read_mode`]: #method.set_read_mode
    /// note this was formaly read, i changed it so it is bytes as it only does that
    pub fn read_bytes(&mut self, buffer: &mut [u8]) -> Result<usize> {
        self.inner.device.read(buffer).or_else(|e| {
            if e.kind() == io::ErrorKind::WouldBlock {
                Ok(0)
            } else {
                Err(Error::Io(e))
            }
        })
    }




    /// Sends the contents of `buffer` to the external device.
    ///
    /// `write_bytes` operates in either blocking or non-blocking mode, depending on the
    /// settings configured by [`set_write_mode`]. By default, `write` is configured
    /// as non-blocking.
    ///
    /// Returns how many bytes were written.
    ///
    /// [`set_write_mode`]: #method.set_write_mode
    /// note this was formaly write, I changed it so it is bytes as it only does that
    pub fn write_bytes(&mut self, buffer: &[u8]) -> Result<usize> {
        // We only need to toggle O_NONBLOCK when read() is configured as
        // blocking. If read() is non-blocking, either with_path() or
        // set_read_mode() will have already enabled O_NONBLOCK.
        if self.inner.blocking_read && !self.inner.blocking_write {
            unsafe {
                libc::fcntl(self.inner.fd, libc::F_SETFL, libc::O_NONBLOCK);
            }
        }

        let result = self.inner.device.write(buffer).or_else(|e| {
            if e.kind() == io::ErrorKind::WouldBlock {
                Ok(0)
            } else {
                Err(Error::Io(e))
            }
        });

        if self.inner.blocking_read && !self.inner.blocking_write {
            unsafe {
                libc::fcntl(self.inner.fd, libc::F_SETFL, 0);
            }
        }

        result
    }


    /// Blocks until all data in the output queue has been transmitted.
    pub fn drain(&self) -> Result<()> {
        termios::drain(self.inner.fd)
    }

    /// Discards all data in the input and/or output queue.
    pub fn flush(&self, queue_type: Queue) -> Result<()> {
        termios::flush(self.inner.fd, queue_type)
    }
}

impl Uart {
    pub fn set_bt()->Result<Uart>{
        Self::with_path("/dev/rfcomm0", 115200, Parity::None, 8, 1)
    }
    pub fn set()->Result<Uart>{
        Self::with_path("/dev/serial0", 115200, Parity::None, 8, 1)
    }
    ///simply write bytes parsed as a String
    /// in future this should be able to take in numbers aswell
    pub fn write(&mut self, message : String) -> Result<usize>{
        self.write_bytes(message.as_bytes())
    }
    /// usses read_bytes to read a String instead
    pub fn read(&mut self) -> Result<String> {
        let mut buffer = [0u8; 255];
        let k = self.read_bytes(&mut buffer)?;
        //let mut out = String::with_capacity(255);
        let out = str::from_utf8(&buffer[0..k]).unwrap().to_string();
        Ok(out)
    }
    /// reads until a certain char appears, this is aspecialy usefull when doing CSV
    pub fn read_until(&mut self,c : char)-> Result<String>{
        let mut string = [0u8;255];
        let mut end:usize =1;
        let mut cond = 0;
        while cond ==0 {
            let mut buffer = [0u8;255];
            let k = self.read_bytes(&mut buffer).expect("Something failed in reading the uart");
            if k > 0 && k<255{
                for i in 0..k{
                    if buffer[i] == c as u8 {
                        cond = 1;
                        break;
                    }else{
                        string[end-1] = buffer[i];
                        end =end+1;
                    }
                }
            }
        }
        let message :&str = str::from_utf8(&string).expect("Convertion failed");
        let out:String =message.trim_matches(char::from('\0')).into();
        Ok(out)
    }
    /// reads a line from the UART
    pub fn read_line(&mut self)-> Result<String>{
        self.read_until('\n')
    }
    /// reads values as a CSV and returns them in the buffer
    pub fn read_csv<T: std::str::FromStr>(&mut self, buffer: &mut [T])->Result<u8>{
        let s:String = self.read_until('\n').unwrap();
        let v: Vec<&str>= s.split(',').collect();
        if v.len() == 0 {
            Ok(0u8)
        } else {
            for i in 0..v.len(){
                match  v[i].parse::<T>(){
                    Ok(k) => {buffer[i] = k},
                    Err(_) => {break;},
                }
            }
            Ok(v.len() as u8)
        }

    }
}