round_based/sim/async_env.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
//! Fully async simulation
//!
//! Simulation provided in a [parent module](super) should be used in most cases. It works
//! by converting all parties (defined as async functions) into [state machines](crate::state_machine),
//! which has certain limitations. In particular, the protocol cannot await on any futures that
//! aren't provided by [`MpcParty`], for instance, awaiting on the timer will cause a simulation error.
//!
//! We suggest to avoid awaiting on the futures that aren't provided by `MpcParty` in the MPC protocol
//! implementation as it likely makes it runtime-dependent. However, if you do ultimately need to
//! do that, then you can't use regular simulation for the tests.
//!
//! This module provides fully async simulation built for tokio runtime, so the protocol can await
//! on any futures supported by the tokio.
//!
//! ## Limitations
//! To implement simulated [network](Network), we used [`tokio::sync::broadcast`] channels, which
//! have internal buffer of stored messages, and once simulated network receives more messages than
//! internal buffer can fit, some of the parties will not receive some of the messages, which will
//! lead to execution error.
//!
//! By default, internal buffer is preallocated to fit 500 messages, which should be more than
//! sufficient for simulating protocols with small amount of parties (say, < 10).
//!
//! If you need to preallocate bigger buffer, use [`Network::with_capacity`].
//!
//! ## Example
//! Entry point to the simulation are [`run`] and [`run_with_setup`] functions
//!
//! ```rust,no_run
//! # #[tokio::main(flavor = "current_thread")]
//! # async fn main() {
//! use round_based::{Mpc, PartyIndex};
//!
//! # type Result<T, E = ()> = std::result::Result<T, E>;
//! # type Randomness = [u8; 32];
//! # type Msg = ();
//! // Any MPC protocol you want to test
//! pub async fn protocol_of_random_generation<M>(
//! party: M,
//! i: PartyIndex,
//! n: u16
//! ) -> Result<Randomness>
//! where
//! M: Mpc<ProtocolMessage = Msg>
//! {
//! // ...
//! # todo!()
//! }
//!
//! let n = 3;
//!
//! let output = round_based::sim::async_env::run(
//! n,
//! |i, party| protocol_of_random_generation(party, i, n),
//! )
//! .await
//! // unwrap `Result`s
//! .expect_ok()
//! // check that all parties produced the same response
//! .expect_eq();
//!
//! println!("Output randomness: {}", hex::encode(output));
//! # }
//! ```
use alloc::sync::Arc;
use core::{
future::Future,
pin::Pin,
sync::atomic::AtomicU64,
task::ready,
task::{Context, Poll},
};
use futures_util::{Sink, Stream};
use tokio::sync::broadcast;
use tokio_stream::wrappers::{errors::BroadcastStreamRecvError, BroadcastStream};
use crate::delivery::{Delivery, Incoming, Outgoing};
use crate::{MessageDestination, MessageType, MpcParty, MsgId, PartyIndex};
use super::SimResult;
const DEFAULT_CAPACITY: usize = 500;
/// Simulated async network
pub struct Network<M> {
channel: broadcast::Sender<Outgoing<Incoming<M>>>,
next_party_idx: PartyIndex,
next_msg_id: Arc<NextMessageId>,
}
impl<M> Network<M>
where
M: Clone + Send + Unpin + 'static,
{
/// Instantiates a new simulation
pub fn new() -> Self {
Self::with_capacity(500)
}
/// Instantiates a new simulation with given capacity
///
/// `Simulation` stores internally all sent messages. Capacity limits size of the internal buffer.
/// Because of that you might run into error if you choose too small capacity. Choose capacity
/// that can fit all the messages sent by all the parties during entire protocol lifetime.
///
/// Default capacity is 500 (i.e. if you call `Simulation::new()`)
pub fn with_capacity(capacity: usize) -> Self {
Self {
channel: broadcast::channel(capacity).0,
next_party_idx: 0,
next_msg_id: Default::default(),
}
}
/// Adds new party to the network
pub fn add_party(&mut self) -> MpcParty<M, MockedDelivery<M>> {
MpcParty::connected(self.connect_new_party())
}
/// Connects new party to the network
///
/// Similar to [`.add_party()`](Self::add_party) but returns `MockedDelivery<M>` instead of
/// `MpcParty<M, MockedDelivery<M>>`
pub fn connect_new_party(&mut self) -> MockedDelivery<M> {
let local_party_idx = self.next_party_idx;
self.next_party_idx += 1;
MockedDelivery {
incoming: MockedIncoming {
local_party_idx,
receiver: BroadcastStream::new(self.channel.subscribe()),
},
outgoing: MockedOutgoing {
local_party_idx,
sender: self.channel.clone(),
next_msg_id: self.next_msg_id.clone(),
},
}
}
}
impl<M> Default for Network<M>
where
M: Clone + Send + Unpin + 'static,
{
fn default() -> Self {
Self::new()
}
}
/// Mocked networking
pub struct MockedDelivery<M> {
incoming: MockedIncoming<M>,
outgoing: MockedOutgoing<M>,
}
impl<M> Delivery<M> for MockedDelivery<M>
where
M: Clone + Send + Unpin + 'static,
{
type Send = MockedOutgoing<M>;
type Receive = MockedIncoming<M>;
type SendError = broadcast::error::SendError<()>;
type ReceiveError = BroadcastStreamRecvError;
fn split(self) -> (Self::Receive, Self::Send) {
(self.incoming, self.outgoing)
}
}
/// Incoming channel of mocked network
pub struct MockedIncoming<M> {
local_party_idx: PartyIndex,
receiver: BroadcastStream<Outgoing<Incoming<M>>>,
}
impl<M> Stream for MockedIncoming<M>
where
M: Clone + Send + 'static,
{
type Item = Result<Incoming<M>, BroadcastStreamRecvError>;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
loop {
let msg = match ready!(Pin::new(&mut self.receiver).poll_next(cx)) {
Some(Ok(m)) => m,
Some(Err(e)) => return Poll::Ready(Some(Err(e))),
None => return Poll::Ready(None),
};
if msg.recipient.is_p2p()
&& msg.recipient != MessageDestination::OneParty(self.local_party_idx)
{
continue;
}
return Poll::Ready(Some(Ok(msg.msg)));
}
}
}
/// Outgoing channel of mocked network
pub struct MockedOutgoing<M> {
local_party_idx: PartyIndex,
sender: broadcast::Sender<Outgoing<Incoming<M>>>,
next_msg_id: Arc<NextMessageId>,
}
impl<M> Sink<Outgoing<M>> for MockedOutgoing<M> {
type Error = broadcast::error::SendError<()>;
fn poll_ready(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
Poll::Ready(Ok(()))
}
fn start_send(self: Pin<&mut Self>, msg: Outgoing<M>) -> Result<(), Self::Error> {
let msg_type = match msg.recipient {
MessageDestination::AllParties => MessageType::Broadcast,
MessageDestination::OneParty(_) => MessageType::P2P,
};
self.sender
.send(msg.map(|m| Incoming {
id: self.next_msg_id.next(),
sender: self.local_party_idx,
msg_type,
msg: m,
}))
.map_err(|_| broadcast::error::SendError(()))?;
Ok(())
}
fn poll_flush(self: Pin<&mut Self>, _cx: &mut Context) -> Poll<Result<(), Self::Error>> {
Poll::Ready(Ok(()))
}
fn poll_close(self: Pin<&mut Self>, _cx: &mut Context) -> Poll<Result<(), Self::Error>> {
Poll::Ready(Ok(()))
}
}
#[derive(Default)]
struct NextMessageId(AtomicU64);
impl NextMessageId {
pub fn next(&self) -> MsgId {
self.0.fetch_add(1, core::sync::atomic::Ordering::Relaxed)
}
}
/// Simulates execution of the protocol
///
/// Takes amount of participants, and a function that carries out the protocol for
/// one party. The function takes as input: index of the party, and [`MpcParty`]
/// that can be used to communicate with others.
///
/// ## Example
/// ```rust,no_run
/// # #[tokio::main(flavor = "current_thread")]
/// # async fn main() {
/// use round_based::{Mpc, PartyIndex};
///
/// # type Result<T, E = ()> = std::result::Result<T, E>;
/// # type Randomness = [u8; 32];
/// # type Msg = ();
/// // Any MPC protocol you want to test
/// pub async fn protocol_of_random_generation<M>(
/// party: M,
/// i: PartyIndex,
/// n: u16
/// ) -> Result<Randomness>
/// where
/// M: Mpc<ProtocolMessage = Msg>
/// {
/// // ...
/// # todo!()
/// }
///
/// let n = 3;
///
/// let output = round_based::sim::async_env::run(
/// n,
/// |i, party| protocol_of_random_generation(party, i, n),
/// )
/// .await
/// // unwrap `Result`s
/// .expect_ok()
/// // check that all parties produced the same response
/// .expect_eq();
///
/// println!("Output randomness: {}", hex::encode(output));
/// # }
/// ```
pub async fn run<M, F>(
n: u16,
party_start: impl FnMut(u16, MpcParty<M, MockedDelivery<M>>) -> F,
) -> SimResult<F::Output>
where
M: Clone + Send + Unpin + 'static,
F: Future,
{
run_with_capacity(DEFAULT_CAPACITY, n, party_start).await
}
/// Simulates execution of the protocol
///
/// Same as [`run`] but also takes a capacity of internal buffer to be used
/// within simulated network. Size of internal buffer should fit total amount of the
/// messages sent by all participants during the whole protocol execution.
pub async fn run_with_capacity<M, F>(
capacity: usize,
n: u16,
mut party_start: impl FnMut(u16, MpcParty<M, MockedDelivery<M>>) -> F,
) -> SimResult<F::Output>
where
M: Clone + Send + Unpin + 'static,
F: Future,
{
run_with_capacity_and_setup(
capacity,
core::iter::repeat(()).take(n.into()),
|i, party, ()| party_start(i, party),
)
.await
}
/// Simulates execution of the protocol
///
/// Similar to [`run`], but allows some setup to be provided to the protocol execution
/// function.
///
/// Simulation will have as many parties as `setups` iterator yields
///
/// ## Example
/// ```rust,no_run
/// # #[tokio::main(flavor = "current_thread")]
/// # async fn main() {
/// use round_based::{Mpc, PartyIndex};
///
/// # type Result<T, E = ()> = std::result::Result<T, E>;
/// # type Randomness = [u8; 32];
/// # type Msg = ();
/// // Any MPC protocol you want to test
/// pub async fn protocol_of_random_generation<M>(
/// rng: impl rand::RngCore,
/// party: M,
/// i: PartyIndex,
/// n: u16
/// ) -> Result<Randomness>
/// where
/// M: Mpc<ProtocolMessage = Msg>
/// {
/// // ...
/// # todo!()
/// }
///
/// let mut rng = rand_dev::DevRng::new();
/// let n = 3;
/// let output = round_based::sim::async_env::run_with_setup(
/// core::iter::repeat_with(|| rng.fork()).take(n.into()),
/// |i, party, rng| protocol_of_random_generation(rng, party, i, n),
/// )
/// .await
/// // unwrap `Result`s
/// .expect_ok()
/// // check that all parties produced the same response
/// .expect_eq();
///
/// println!("Output randomness: {}", hex::encode(output));
/// # }
/// ```
pub async fn run_with_setup<S, M, F>(
setups: impl IntoIterator<Item = S>,
party_start: impl FnMut(u16, MpcParty<M, MockedDelivery<M>>, S) -> F,
) -> SimResult<F::Output>
where
M: Clone + Send + Unpin + 'static,
F: Future,
{
run_with_capacity_and_setup::<S, M, F>(DEFAULT_CAPACITY, setups, party_start).await
}
/// Simulates execution of the protocol
///
/// Same as [`run_with_setup`] but also takes a capacity of internal buffer to be used
/// within simulated network. Size of internal buffer should fit total amount of the
/// messages sent by all participants during the whole protocol execution.
pub async fn run_with_capacity_and_setup<S, M, F>(
capacity: usize,
setups: impl IntoIterator<Item = S>,
mut party_start: impl FnMut(u16, MpcParty<M, MockedDelivery<M>>, S) -> F,
) -> SimResult<F::Output>
where
M: Clone + Send + Unpin + 'static,
F: Future,
{
let mut network = Network::<M>::with_capacity(capacity);
let mut output = alloc::vec![];
for (setup, i) in setups.into_iter().zip(0u16..) {
output.push({
let party = network.add_party();
party_start(i, party, setup)
});
}
let result = futures_util::future::join_all(output).await;
SimResult(result)
}