1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
//! Multiparty protocol simulation
//!
//! [`Simulation`] is an essential developer tool for testing the multiparty protocol locally.
//! It covers most of the boilerplate by mocking networking.
//!
//! ## Example
//!
//! ```rust
//! use round_based::{Mpc, PartyIndex};
//! use round_based::simulation::Simulation;
//! use futures::future::try_join_all;
//!
//! # type Result<T, E = ()> = std::result::Result<T, E>;
//! # type Randomness = [u8; 32];
//! # type Msg = ();
//! // Any MPC protocol you want to test
//! pub async fn protocol_of_random_generation<M>(party: M, i: PartyIndex, n: u16) -> Result<Randomness>
//! where M: Mpc<ProtocolMessage = Msg>
//! {
//! // ...
//! # todo!()
//! }
//!
//! async fn test_randomness_generation() {
//! let n = 3;
//!
//! let mut simulation = Simulation::<Msg>::new();
//! let mut outputs = vec![];
//! for i in 0..n {
//! let party = simulation.add_party();
//! outputs.push(protocol_of_random_generation(party, i, n));
//! }
//!
//! // Waits each party to complete the protocol
//! let outputs = try_join_all(outputs).await.expect("protocol wasn't completed successfully");
//! // Asserts that all parties output the same randomness
//! for output in outputs.iter().skip(1) {
//! assert_eq!(&outputs[0], output);
//! }
//! }
//! ```
use std::pin::Pin;
use std::sync::atomic::AtomicU64;
use std::sync::Arc;
use std::task::ready;
use std::task::{Context, Poll};
use futures_util::{Sink, Stream};
use tokio::sync::broadcast;
use tokio_stream::wrappers::{errors::BroadcastStreamRecvError, BroadcastStream};
use crate::delivery::{Delivery, Incoming, Outgoing};
use crate::{MessageDestination, MessageType, MpcParty, MsgId, PartyIndex};
/// Multiparty protocol simulator
pub struct Simulation<M> {
channel: broadcast::Sender<Outgoing<Incoming<M>>>,
next_party_idx: PartyIndex,
next_msg_id: Arc<NextMessageId>,
}
impl<M> Simulation<M>
where
M: Clone + Send + Unpin + 'static,
{
/// Instantiates a new simulation
pub fn new() -> Self {
Self::with_capacity(500)
}
/// Instantiates a new simulation with given capacity
///
/// `Simulation` stores internally all sent messages. Capacity limits size of the internal buffer.
/// Because of that you might run into error if you choose too small capacity. Choose capacity
/// that can fit all the messages sent by all the parties during entire protocol lifetime.
///
/// Default capacity is 500 (i.e. if you call `Simulation::new()`)
pub fn with_capacity(capacity: usize) -> Self {
Self {
channel: broadcast::channel(capacity).0,
next_party_idx: 0,
next_msg_id: Default::default(),
}
}
/// Adds new party to the network
pub fn add_party(&mut self) -> MpcParty<M, MockedDelivery<M>> {
MpcParty::connected(self.connect_new_party())
}
/// Connects new party to the network
///
/// Similar to [`.add_party()`](Self::add_party) but returns `MockedDelivery<M>` instead of
/// `MpcParty<M, MockedDelivery<M>>`
pub fn connect_new_party(&mut self) -> MockedDelivery<M> {
let local_party_idx = self.next_party_idx;
self.next_party_idx += 1;
MockedDelivery {
incoming: MockedIncoming {
local_party_idx,
receiver: BroadcastStream::new(self.channel.subscribe()),
},
outgoing: MockedOutgoing {
local_party_idx,
sender: self.channel.clone(),
next_msg_id: self.next_msg_id.clone(),
},
}
}
}
impl<M> Default for Simulation<M>
where
M: Clone + Send + Unpin + 'static,
{
fn default() -> Self {
Self::new()
}
}
/// Mocked networking
pub struct MockedDelivery<M> {
incoming: MockedIncoming<M>,
outgoing: MockedOutgoing<M>,
}
impl<M> Delivery<M> for MockedDelivery<M>
where
M: Clone + Send + Unpin + 'static,
{
type Send = MockedOutgoing<M>;
type Receive = MockedIncoming<M>;
type SendError = broadcast::error::SendError<()>;
type ReceiveError = BroadcastStreamRecvError;
fn split(self) -> (Self::Receive, Self::Send) {
(self.incoming, self.outgoing)
}
}
/// Incoming channel of mocked network
pub struct MockedIncoming<M> {
local_party_idx: PartyIndex,
receiver: BroadcastStream<Outgoing<Incoming<M>>>,
}
impl<M> Stream for MockedIncoming<M>
where
M: Clone + Send + 'static,
{
type Item = Result<Incoming<M>, BroadcastStreamRecvError>;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
loop {
let msg = match ready!(Pin::new(&mut self.receiver).poll_next(cx)) {
Some(Ok(m)) => m,
Some(Err(e)) => return Poll::Ready(Some(Err(e))),
None => return Poll::Ready(None),
};
if msg.recipient.is_p2p()
&& msg.recipient != MessageDestination::OneParty(self.local_party_idx)
{
continue;
}
return Poll::Ready(Some(Ok(msg.msg)));
}
}
}
/// Outgoing channel of mocked network
pub struct MockedOutgoing<M> {
local_party_idx: PartyIndex,
sender: broadcast::Sender<Outgoing<Incoming<M>>>,
next_msg_id: Arc<NextMessageId>,
}
impl<M> Sink<Outgoing<M>> for MockedOutgoing<M> {
type Error = broadcast::error::SendError<()>;
fn poll_ready(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
Poll::Ready(Ok(()))
}
fn start_send(self: Pin<&mut Self>, msg: Outgoing<M>) -> Result<(), Self::Error> {
let msg_type = match msg.recipient {
MessageDestination::AllParties => MessageType::Broadcast,
MessageDestination::OneParty(_) => MessageType::P2P,
};
self.sender
.send(msg.map(|m| Incoming {
id: self.next_msg_id.next(),
sender: self.local_party_idx,
msg_type,
msg: m,
}))
.map_err(|_| broadcast::error::SendError(()))?;
Ok(())
}
fn poll_flush(self: Pin<&mut Self>, _cx: &mut Context) -> Poll<Result<(), Self::Error>> {
Poll::Ready(Ok(()))
}
fn poll_close(self: Pin<&mut Self>, _cx: &mut Context) -> Poll<Result<(), Self::Error>> {
Poll::Ready(Ok(()))
}
}
#[derive(Default)]
struct NextMessageId(AtomicU64);
impl NextMessageId {
pub fn next(&self) -> MsgId {
self.0.fetch_add(1, std::sync::atomic::Ordering::Relaxed)
}
}