1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
#![doc(html_root_url = "https://docs.rs/rotary-encoder-hal/0.1.0")] //! # rotary-encoder-hal //! //! A platform agnostic rotary encoder library //! //! Built using [`embedded-hal`] traits //! //! //! # Example //! //! ```rust //! #![no_std] //! #![no_main] //! //! extern crate panic_itm; //! //! use cortex_m_rt::entry; //! use hal::{delay::Delay, prelude::*, stm32}; //! use stm32f3xx_hal as hal; //! //! use rotary_encoder_hal::{Direction, Rotary}; //! //! #[entry] //! fn main() -> ! { //! // necessary preamble: //! let cp = cortex_m::Peripherals::take().unwrap(); //! let peripherals = stm32::Peripherals::take().unwrap(); //! //! let mut flash = peripherals.FLASH.constrain(); //! let mut rcc = peripherals.RCC.constrain(); //! //! let clocks = rcc.cfgr.freeze(&mut flash.acr); //! //! let mut delay = Delay::new(cp.SYST, clocks); //! //! let mut gpiob = peripherals.GPIOB.split(&mut rcc.ahb); //! let pin_a = gpiob //! .pb10 //! .into_pull_up_input(&mut gpiob.moder, &mut gpiob.pupdr); //! let pin_b = gpiob //! .pb11 //! .into_pull_up_input(&mut gpiob.moder, &mut gpiob.pupdr); //! //! // relevant parts: //! let mut enc = Rotary::new(pin_a, pin_b); //! let mut pos: isize = 0; //! //! loop { //! match enc.update().unwrap() { //! Direction::Clockwise => { //! pos += 1; //! } //! Direction::CounterClockwise => { //! pos -= 1; //! } //! Direction::None => {} //! } //! } //! } //! ``` //! //! Alternatively, you can call `update` from an ISR! //! //! [`embedded-hal`]: https://docs.rs/embedded-hal/0.2 #![deny(missing_docs)] #![deny(warnings)] #![no_std] use either::Either; use embedded_hal as hal; use hal::digital::v2::InputPin; /// Holds current/old state and both [`InputPin`](https://docs.rs/embedded-hal/0.2.3/embedded_hal/digital/v2/trait.InputPin.html) #[derive(Clone, Debug, Eq, PartialEq)] pub struct Rotary<A, B> { pin_a: A, pin_b: B, state: u8, } /// The encoder direction is either `Clockwise`, `CounterClockwise`, or `None` #[derive(Clone, Copy, Debug, Eq, PartialEq)] pub enum Direction { /// A clockwise turn Clockwise, /// A counterclockwise turn CounterClockwise, /// No change None, } impl From<u8> for Direction { fn from(s: u8) -> Self { match s { 0b0001 | 0b0111 | 0b1000 | 0b1110 => Direction::Clockwise, 0b0010 | 0b0100 | 0b1011 | 0b1101 => Direction::CounterClockwise, _ => Direction::None, } } } impl<A, B> Rotary<A, B> where A: InputPin, B: InputPin, { /// Accepts two `InputPin`s, these will be read on every `update()` /// [InputPin]: https://docs.rs/embedded-hal/0.2.3/embedded_hal/digital/v2/trait.InputPin.html pub fn new(pin_a: A, pin_b: B) -> Self { Self { pin_a, pin_b, state: 0u8, } } /// Call `update` to evaluate the next state of the encoder, propagates errors from `InputPin` read pub fn update(&mut self) -> Result<Direction, Either<A::Error, B::Error>> { // use mask to get previous state value let mut s = self.state & 0b11; // move in the new state if self.pin_a.is_low().map_err(Either::Left)? { s |= 0b100; } if self.pin_b.is_low().map_err(Either::Right)? { s |= 0b1000; } // move new state in self.state = s >> 2; Ok(s.into()) } }