1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
// The following code was copied and modified from
// https://github.com/iced-rs/iced/blob/31d1d5fecbef50fa319cabd5d4194f1e4aaefa21/graphics/src/gradient.rs
// Iced license (MIT): https://github.com/iced-rs/iced/blob/31d1d5fecbef50fa319cabd5d4194f1e4aaefa21/LICENSE
use half::f16;
use std::cmp::Ordering;
use std::f32::consts::FRAC_PI_2;
use super::color::PackedSrgb;
use crate::math::{Angle, Point, Rect};
pub const MAX_STOPS: usize = 8;
/// A fill which transitions colors progressively along a direction, either linearly, radially (TBD),
/// or conically (TBD).
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum Gradient {
/// A linear gradient interpolates colors along a direction at a specific angle.
Linear(LinearGradient),
}
impl Gradient {
/// Adjust the opacity of the gradient by a multiplier applied to each color stop.
pub fn mul_alpha(mut self, alpha_multiplier: f32) -> Self {
match &mut self {
Gradient::Linear(linear) => {
for stop in linear.stops.iter_mut().flatten() {
*stop.color.a_mut() *= alpha_multiplier;
}
}
}
self
}
pub fn packed(&self, bounds: Rect) -> PackedGradient {
PackedGradient::new(self, bounds)
}
}
impl From<LinearGradient> for Gradient {
fn from(gradient: LinearGradient) -> Self {
Self::Linear(gradient)
}
}
impl Default for Gradient {
fn default() -> Self {
Gradient::Linear(LinearGradient::new(Angle::default()))
}
}
/// A point along the gradient vector where the specified [`color`] is unmixed.
///
/// [`color`]: Self::color
#[derive(Debug, Default, Clone, Copy, PartialEq)]
pub struct ColorStop {
/// Offset along the gradient vector in the range `[0.0, 1.0]`.
pub offset: f32,
/// The color of the gradient at the specified [`offset`].
///
/// [`offset`]: Self::offset
pub color: PackedSrgb,
}
/// A linear gradient.
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct LinearGradient {
/// How the [`Gradient`] is angled within its bounds.
pub angle: Angle,
/// [`ColorStop`]s along the linear gradient path.
pub stops: [Option<ColorStop>; MAX_STOPS],
}
impl LinearGradient {
/// Creates a new [`Linear`] gradient with the given angle in [`Angle`].
pub const fn new(angle: Angle) -> Self {
Self {
angle: angle,
stops: [None; 8],
}
}
/// Adds a new [`ColorStop`], defined by an offset and a color, to the gradient.
///
/// Any `offset` that is not within `0.0..=1.0` will be silently ignored.
///
/// Any stop added after the 8th will be silently ignored.
pub fn add_stop(mut self, offset: f32, color: impl Into<PackedSrgb>) -> Self {
if offset.is_finite() && (0.0..=1.0).contains(&offset) {
let (Ok(index) | Err(index)) = self.stops.binary_search_by(|stop| match stop {
None => Ordering::Greater,
Some(stop) => stop.offset.partial_cmp(&offset).unwrap(),
});
if index < 8 {
self.stops[index] = Some(ColorStop {
offset,
color: color.into(),
});
}
} else {
log::warn!("Gradient color stop must be within 0.0..=1.0 range.");
};
self
}
/// Adds multiple [`ColorStop`]s to the gradient.
///
/// Any stop added after the 8th will be silently ignored.
pub fn add_stops(mut self, stops: impl IntoIterator<Item = ColorStop>) -> Self {
for stop in stops {
self = self.add_stop(stop.offset, stop.color);
}
self
}
}
/// Packed [`Gradient`] data for use in shader code.
#[repr(C)]
#[derive(Default, Debug, Copy, Clone, PartialEq, bytemuck::Zeroable, bytemuck::Pod)]
pub struct PackedGradient {
/// 8 colors, each channel = 16 bit float, 2 colors packed into 1 u32
pub colors: [[u32; 2]; 8],
/// 8 offsets, 8x 16 bit floats packed into 4 u32s
pub offsets: [u32; 4],
/// `[start.x, start.y, end.x, end.y]` in logical points
pub direction: [f32; 4],
}
impl PackedGradient {
pub fn new(gradient: &Gradient, bounds: Rect) -> Self {
match gradient {
Gradient::Linear(linear) => {
let mut colors = [[0u32; 2]; 8];
let mut offsets = [f16::from(0u8); 8];
for (index, stop) in linear.stops.iter().enumerate() {
let packed_color = stop.map(|s| s.color).unwrap_or(PackedSrgb::default());
colors[index] = [
pack_f16s([
f16::from_f32(packed_color.r()),
f16::from_f32(packed_color.g()),
]),
pack_f16s([
f16::from_f32(packed_color.b()),
f16::from_f32(packed_color.a()),
]),
];
offsets[index] = f16::from_f32(stop.map(|s| s.offset).unwrap_or(2.0));
}
let offsets = [
pack_f16s([offsets[0], offsets[1]]),
pack_f16s([offsets[2], offsets[3]]),
pack_f16s([offsets[4], offsets[5]]),
pack_f16s([offsets[6], offsets[7]]),
];
let (start, end) = to_distance(linear.angle, &bounds);
let direction = [start.x, start.y, end.x, end.y];
PackedGradient {
colors,
offsets,
direction,
}
}
}
}
}
/// Calculates the line in which the angle intercepts the `bounds`.
fn to_distance(angle: Angle, bounds: &Rect) -> (Point, Point) {
let angle = angle - Angle { radians: FRAC_PI_2 };
let r = Point::new(f32::cos(angle.radians), f32::sin(angle.radians));
let bounds_center = bounds.center();
let distance_to_rect = f32::max(
f32::abs(r.x * bounds.size.width / 2.0),
f32::abs(r.y * bounds.size.height / 2.0),
);
let start = Point::new(
bounds_center.x - (r.x * distance_to_rect),
bounds_center.y - (r.y * distance_to_rect),
);
let end = Point::new(
bounds_center.x + (r.x * distance_to_rect),
bounds_center.y + (r.y * distance_to_rect),
);
(start, end)
}
/// Packs two f16s into one u32.
fn pack_f16s(f: [f16; 2]) -> u32 {
let one = (f[0].to_bits() as u32) << 16;
let two = f[1].to_bits() as u32;
one | two
}