rootcause_internals/report/raw.rs
1//! Type-erased report pointer types.
2//!
3//! This module encapsulates the `ptr` field of [`RawReport`], [`RawReportRef`],
4//! and [`RawReportMut`], ensuring it is only visible within this module. This
5//! visibility restriction guarantees the safety invariant: **the pointer always
6//! comes from `Arc<ReportData<C>>`**.
7//!
8//! # Safety Invariant
9//!
10//! Since the `ptr` field can only be set via [`RawReport::new`] or
11//! [`RawReport::from_arc`] (which create it from `Arc::into_raw`), and cannot
12//! be modified afterward (no `pub` or `pub(crate)` fields), the pointer
13//! provenance remains valid throughout the value's lifetime.
14//!
15//! The [`RawReport::drop`] implementation and reference counting operations
16//! rely on this invariant to safely reconstruct the `Arc` and manage memory.
17//!
18//! # Type Erasure
19//!
20//! The concrete type parameter `C` is erased by casting to
21//! `ReportData<Erased>`. The vtable stored within the `ReportData` provides the
22//! runtime type information needed to safely downcast and format reports.
23//!
24//! # Allocation Strategy
25//!
26//! Unlike attachments (which use `Box`), reports use `triomphe::Arc` for
27//! storage. This enables:
28//! - Cheap cloning through reference counting
29//! - Shared ownership across multiple report references
30//! - Thread-safe sharing when the context type is `Send + Sync`
31
32use alloc::vec::Vec;
33use core::{any::TypeId, ptr::NonNull};
34
35use crate::{
36 attachment::RawAttachment,
37 handlers::{ContextFormattingStyle, ContextHandler, FormattingFunction},
38 report::data::ReportData,
39 util::Erased,
40};
41
42/// A pointer to a [`ReportData`] that is guaranteed to point to an initialized
43/// instance of a [`ReportData<C>`] for some specific `C`, though we do not know
44/// which actual `C` it is.
45///
46/// However, the pointer is allowed to transition into a non-initialized state
47/// inside the [`RawReport::drop`] method.
48///
49/// The pointer is guaranteed to have been created using
50/// [`triomphe::Arc::into_raw`].
51///
52/// We cannot use a [`triomphe::OffsetArc<ReportData<C>>`] directly, because
53/// that does not allow us to type-erase the `C`.
54#[repr(transparent)]
55pub struct RawReport {
56 /// Pointer to the inner report data
57 ///
58 /// # Safety
59 ///
60 /// The following safety invariants are guaranteed to be upheld as long as
61 /// this struct exists:
62 ///
63 /// 1. The pointer must have been created from a
64 /// `triomphe::Arc<ReportData<C>>` for some `C` using
65 /// `triomphe::Arc::into_raw`.
66 /// 2. The pointer will point to the same `ReportData<C>` for the entire
67 /// lifetime of this object.
68 ptr: NonNull<ReportData<Erased>>,
69}
70
71impl RawReport {
72 /// Creates a new [`RawReport`] from a [`triomphe::Arc<ReportData<C>>`].
73 #[inline]
74 pub(super) fn from_arc<C: 'static>(data: triomphe::Arc<ReportData<C>>) -> Self {
75 let ptr: *const ReportData<C> = triomphe::Arc::into_raw(data);
76 let ptr: *mut ReportData<Erased> = ptr.cast::<ReportData<Erased>>().cast_mut();
77
78 // SAFETY:
79 // 1. Triomphe guarantees that `Arc::into_raw` returns a non-null pointer.
80 let ptr: NonNull<ReportData<Erased>> = unsafe { NonNull::new_unchecked(ptr) };
81
82 Self { ptr }
83 }
84
85 /// Consumes the RawReport without decrementing the reference count and
86 /// returns the inner pointer.
87 #[inline]
88 pub(super) fn into_non_null(self) -> NonNull<ReportData<Erased>> {
89 let ptr = self.ptr;
90 core::mem::forget(self);
91 ptr
92 }
93
94 /// Creates a new [`RawReport`] with the specified handler, context,
95 /// children, and attachments.
96 ///
97 /// The created report will have the supplied context type and handler type.
98 /// It will also have a strong count of 1.
99 #[inline]
100 pub fn new<C, H>(context: C, children: Vec<RawReport>, attachments: Vec<RawAttachment>) -> Self
101 where
102 C: 'static,
103 H: ContextHandler<C>,
104 {
105 let data = triomphe::Arc::new(ReportData::new::<H>(context, children, attachments));
106 Self::from_arc(data)
107 }
108
109 /// Returns a reference to the [`ReportData`] instance.
110 #[inline]
111 pub fn as_ref(&self) -> RawReportRef<'_> {
112 RawReportRef {
113 ptr: self.ptr,
114 _marker: core::marker::PhantomData,
115 }
116 }
117
118 /// Returns a mutable reference to the [`ReportData`] instance.
119 ///
120 /// # Safety
121 ///
122 /// The caller must ensure:
123 ///
124 /// 1. This is the only existing reference pointing to the inner
125 /// [`ReportData`]. Specifically the strong count of the inner
126 /// [`triomphe::Arc`] must be `1`.
127 #[inline]
128 pub unsafe fn as_mut(&mut self) -> RawReportMut<'_> {
129 RawReportMut {
130 ptr: self.ptr,
131 _marker: core::marker::PhantomData,
132 }
133 }
134}
135
136impl core::ops::Drop for RawReport {
137 #[inline]
138 fn drop(&mut self) {
139 let vtable = self.as_ref().vtable();
140
141 // SAFETY:
142 // 1. The pointer comes from `Arc::into_raw` (guaranteed by `RawReport::new`)
143 // 2. The vtable returned by `self.as_ref().vtable()` is guaranteed to match the
144 // data in the `ReportData`.
145 // 3. The pointer is not used after this call (we're in the drop function)
146 unsafe {
147 vtable.drop(self.ptr);
148 }
149 }
150}
151
152/// A lifetime-bound pointer to a [`ReportData`] that is guaranteed to point
153/// to an initialized instance of a [`ReportData<C>`] for some specific `C`,
154/// though we do not know which actual `C` it is.
155///
156/// We cannot use a [`&'a ReportData<C>`] directly, because that would require
157/// us to know the actual type of the context, which we do not.
158///
159/// [`&'a ReportData<C>`]: ReportData
160///
161/// # Safety invariants
162///
163/// This reference behaves like a `&'a ReportData<C>` for some unknown
164/// `C` and upholds the usual safety invariants of shared references:
165///
166/// 1. The pointee is properly initialized for the entire lifetime `'a`.
167/// 2. The pointee is not mutated for the entire lifetime `'a`.
168#[derive(Clone, Copy)]
169#[repr(transparent)]
170pub struct RawReportRef<'a> {
171 /// Pointer to the inner report data
172 ///
173 /// # Safety
174 ///
175 /// The following safety invariants are guaranteed to be upheld as long as
176 /// this struct exists:
177 ///
178 /// 1. The pointer must have been created from a
179 /// `triomphe::Arc<ReportData<C>>` for some `C` using
180 /// `triomphe::Arc::into_raw`.
181 /// 2. The pointer will point to the same `ReportData<C>` for the entire
182 /// lifetime of this object.
183 ptr: NonNull<ReportData<Erased>>,
184
185 /// Marker to tell the compiler that we should
186 /// behave the same as a `&'a ReportData<Erased>`
187 _marker: core::marker::PhantomData<&'a ReportData<Erased>>,
188}
189
190impl<'a> RawReportRef<'a> {
191 /// Casts the [`RawReportRef`] to a [`ReportData<C>`] reference.
192 ///
193 /// # Safety
194 ///
195 /// The caller must ensure:
196 ///
197 /// 1. The type `C` matches the actual context type stored in the
198 /// [`ReportData`]
199 #[inline]
200 pub(super) unsafe fn cast_inner<C>(self) -> &'a ReportData<C> {
201 // Debug assertion to catch type mismatches in case of bugs
202 debug_assert_eq!(self.vtable().type_id(), TypeId::of::<C>());
203
204 let this = self.ptr.cast::<ReportData<C>>();
205 // SAFETY: Converting the NonNull pointer to a reference is sound because:
206 // - The pointer is non-null, properly aligned, and dereferenceable (guaranteed
207 // by RawReportRef's type invariants)
208 // - The pointee is properly initialized (RawReportRef's doc comment guarantees
209 // it points to an initialized ReportData<C> for some C)
210 // - The type `C` matches the actual context type (guaranteed by caller)
211 // - Shared access is allowed
212 // - The reference lifetime 'a is valid (tied to RawReportRef<'a>'s lifetime)
213 unsafe { this.as_ref() }
214 }
215
216 /// Returns a [`NonNull`] pointer to the [`ReportData`] instance.
217 #[inline]
218 pub(super) fn as_ptr(self) -> *const ReportData<Erased> {
219 self.ptr.as_ptr()
220 }
221
222 /// Returns the [`TypeId`] of the context.
223 #[inline]
224 pub fn context_type_id(self) -> TypeId {
225 self.vtable().type_id()
226 }
227
228 /// Returns the [`TypeId`] of the context.
229 #[inline]
230 pub fn context_handler_type_id(self) -> TypeId {
231 self.vtable().handler_type_id()
232 }
233
234 /// Returns the source of the context using the [`ContextHandler::source`]
235 /// method specified when the [`ReportData`] was created.
236 #[inline]
237 pub fn context_source(self) -> Option<&'a (dyn core::error::Error + 'static)> {
238 let vtable = self.vtable();
239 // SAFETY:
240 // 1. The vtable returned by `self.vtable()` is guaranteed to match the data in
241 // the `ReportData`.
242 unsafe { vtable.source(self) }
243 }
244
245 /// Formats the context by using the [`ContextHandler::display`] method
246 /// specified by the handler used to create the [`ReportData`].
247 #[inline]
248 pub fn context_display(self, formatter: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
249 let vtable = self.vtable();
250 // SAFETY:
251 // 1. The vtable returned by `self.vtable()` is guaranteed to match the data in
252 // the `ReportData`.
253 unsafe { vtable.display(self, formatter) }
254 }
255
256 /// Formats the context by using the [`ContextHandler::debug`] method
257 /// specified by the handler used to create the [`ReportData`].
258 #[inline]
259 pub fn context_debug(self, formatter: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
260 let vtable = self.vtable();
261 // SAFETY:
262 // 1. The vtable returned by `self.vtable()` is guaranteed to match the data in
263 // the `ReportData`.
264 unsafe { vtable.debug(self, formatter) }
265 }
266
267 /// The formatting style preferred by the context when formatted as part of
268 /// a report.
269 ///
270 /// # Arguments
271 ///
272 /// - `report_formatting_function`: Whether the report in which this context
273 /// will be embedded is being formatted using [`Display`] formatting or
274 /// [`Debug`]
275 ///
276 /// [`Display`]: core::fmt::Display
277 /// [`Debug`]: core::fmt::Debug
278 #[inline]
279 pub fn preferred_context_formatting_style(
280 self,
281 report_formatting_function: FormattingFunction,
282 ) -> ContextFormattingStyle {
283 let vtable = self.vtable();
284 // SAFETY:
285 // 1. The vtable returned by `self.vtable()` is guaranteed to match the data in
286 // the `ReportData`.
287 unsafe {
288 // @add-unsafe-context: ReportData
289 vtable.preferred_context_formatting_style(self, report_formatting_function)
290 }
291 }
292
293 /// Clones the inner [`triomphe::Arc`] and returns a new [`RawReport`]
294 /// pointing to the same data.
295 ///
296 /// # Safety
297 ///
298 /// The caller must ensure:
299 ///
300 /// 1. All other references to this report are compatible with shared
301 /// ownership. Specifically none of them assume that the strong_count is
302 /// `1`.
303 #[inline]
304 pub unsafe fn clone_arc(self) -> RawReport {
305 let vtable = self.vtable();
306 // SAFETY:
307 // 1. Guaranteed by invariants on this type
308 // 2. Guaranteed by the fact that `ReportData` can only be constructed by
309 // `ReportData::new`
310 // 3. Guaranteed by the caller
311 unsafe {
312 // @add-unsafe-context: ReportData
313 vtable.clone_arc(self.ptr)
314 }
315 }
316
317 /// Gets the strong_count of the inner [`triomphe::Arc`].
318 #[inline]
319 pub fn strong_count(self) -> usize {
320 let vtable = self.vtable();
321 // SAFETY:
322 // 1. The vtable returned by `self.vtable()` is guaranteed to match the data in
323 // the `ReportData`.
324 unsafe {
325 // @add-unsafe-context: ReportData
326 vtable.strong_count(self)
327 }
328 }
329}
330
331/// A mutable lifetime-bound pointer to a [`ReportData`] that is guaranteed to
332/// point to an initialized instance of a [`ReportData<C>`] for some specific
333/// `C`, though we do not know which actual `C` it is.
334///
335/// We cannot use a [`&'a mut ReportData<C>`] directly, because that would
336/// require us to know the actual type of the context, which we do not.
337///
338/// [`&'a mut ReportData<C>`]: ReportData
339///
340/// # Safety invariants
341///
342/// This reference behaves like a `&'a mut ReportData<C>` for some unknown
343/// `C` and upholds the usual safety invariants of mutable references:
344///
345/// 1. The pointee is properly initialized for the entire lifetime `'a`.
346/// 2. The pointee is not aliased for the entire lifetime `'a`.
347/// 3. Like a `&'a mut T`, it is possible to reborrow this reference to a
348/// shorter lifetime. The borrow checker will ensure that original longer
349/// lifetime is not used while the shorter lifetime exists.
350#[repr(transparent)]
351pub struct RawReportMut<'a> {
352 /// Pointer to the inner report data
353 ///
354 /// # Safety
355 ///
356 /// The following safety invariants are guaranteed to be upheld as long as
357 /// this struct exists:
358 ///
359 /// 1. The pointer must have been created from a
360 /// `triomphe::Arc<ReportData<C>>` for some `C` using
361 /// `triomphe::Arc::into_raw`.
362 /// 2. The pointer will point to the same `ReportData<C>` for the entire
363 /// lifetime of this object.
364 ptr: NonNull<ReportData<Erased>>,
365
366 /// Marker to tell the compiler that we should
367 /// behave the same as a `&'a mut ReportData<Erased>`
368 _marker: core::marker::PhantomData<&'a mut ReportData<Erased>>,
369}
370
371impl<'a> RawReportMut<'a> {
372 /// Casts the [`RawReportMut`] to a mutable [`ReportData<C>`] reference.
373 ///
374 /// # Safety
375 ///
376 /// The caller must ensure:
377 ///
378 /// 1. The type `C` matches the actual context type stored in the
379 /// [`ReportData`]
380 #[inline]
381 pub(super) unsafe fn cast_inner<C>(self) -> &'a mut ReportData<C> {
382 // Debug assertion to catch type mismatches in case of bugs
383 debug_assert_eq!(self.as_ref().vtable().type_id(), TypeId::of::<C>());
384
385 let mut this = self.ptr.cast::<ReportData<C>>();
386
387 // SAFETY: Converting the NonNull pointer to a mutable reference is sound
388 // because:
389 // - The pointer is non-null, properly aligned, and dereferenceable (guaranteed
390 // by RawReportMut's type invariants)
391 // - The pointee is properly initialized (RawReportMut's doc comment guarantees
392 // it points to an initialized ReportData<C> for some C)
393 // - The type `C` matches the actual context type (guaranteed by caller)
394 // - Exclusive access is guaranteed
395 // - The reference lifetime 'a is valid (tied to RawReportMut<'a>'s lifetime)
396 unsafe { this.as_mut() }
397 }
398
399 /// Reborrows the mutable reference to the [`ReportData`] with a shorter
400 /// lifetime.
401 #[inline]
402 pub fn reborrow<'b>(&'b mut self) -> RawReportMut<'b> {
403 RawReportMut {
404 ptr: self.ptr,
405 _marker: core::marker::PhantomData,
406 }
407 }
408
409 /// Returns a reference to the [`ReportData`] instance.
410 #[inline]
411 pub fn as_ref(&self) -> RawReportRef<'_> {
412 RawReportRef {
413 ptr: self.ptr,
414 _marker: core::marker::PhantomData,
415 }
416 }
417
418 /// Consumes the mutable reference and returns an immutable one with the
419 /// same lifetime.
420 #[inline]
421 pub fn into_ref(self) -> RawReportRef<'a> {
422 RawReportRef {
423 ptr: self.ptr,
424 _marker: core::marker::PhantomData,
425 }
426 }
427
428 /// Consumes this [`RawReportMut`] and returns a raw mutable pointer to the
429 /// underlying [`ReportData`].
430 ///
431 /// This method is primarily used for internal operations that require
432 /// direct pointer access.
433 #[inline]
434 pub(super) fn into_mut_ptr(self) -> *mut ReportData<Erased> {
435 self.ptr.as_ptr()
436 }
437}
438
439#[cfg(test)]
440mod tests {
441 use alloc::{string::String, vec};
442 use core::{error::Error, fmt};
443
444 use super::*;
445 use crate::handlers::ContextHandler;
446
447 struct HandlerI32;
448 impl ContextHandler<i32> for HandlerI32 {
449 fn source(_value: &i32) -> Option<&(dyn Error + 'static)> {
450 None
451 }
452
453 fn display(value: &i32, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
454 fmt::Display::fmt(value, formatter)
455 }
456
457 fn debug(value: &i32, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
458 fmt::Debug::fmt(value, formatter)
459 }
460 }
461
462 struct HandlerString;
463 impl ContextHandler<String> for HandlerString {
464 fn source(_value: &String) -> Option<&(dyn Error + 'static)> {
465 None
466 }
467
468 fn display(value: &String, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
469 fmt::Display::fmt(value, formatter)
470 }
471
472 fn debug(value: &String, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
473 fmt::Debug::fmt(value, formatter)
474 }
475 }
476
477 #[test]
478 fn test_raw_report_size() {
479 assert_eq!(
480 core::mem::size_of::<RawReport>(),
481 core::mem::size_of::<usize>()
482 );
483 assert_eq!(
484 core::mem::size_of::<Option<RawReport>>(),
485 core::mem::size_of::<usize>()
486 );
487 assert_eq!(
488 core::mem::size_of::<Result<(), RawReport>>(),
489 core::mem::size_of::<usize>()
490 );
491 assert_eq!(
492 core::mem::size_of::<Result<String, RawReport>>(),
493 core::mem::size_of::<String>()
494 );
495 assert_eq!(
496 core::mem::size_of::<Option<Option<RawReport>>>(),
497 core::mem::size_of::<Option<usize>>()
498 );
499
500 assert_eq!(
501 core::mem::size_of::<RawReportRef<'_>>(),
502 core::mem::size_of::<usize>()
503 );
504 assert_eq!(
505 core::mem::size_of::<Option<RawReportRef<'_>>>(),
506 core::mem::size_of::<usize>()
507 );
508 assert_eq!(
509 core::mem::size_of::<Result<(), RawReportRef<'_>>>(),
510 core::mem::size_of::<usize>()
511 );
512 assert_eq!(
513 core::mem::size_of::<Result<String, RawReportRef<'_>>>(),
514 core::mem::size_of::<String>()
515 );
516 assert_eq!(
517 core::mem::size_of::<Option<Option<RawReportRef<'_>>>>(),
518 core::mem::size_of::<Option<usize>>()
519 );
520
521 assert_eq!(
522 core::mem::size_of::<RawReportMut<'_>>(),
523 core::mem::size_of::<usize>()
524 );
525 assert_eq!(
526 core::mem::size_of::<Option<RawReportMut<'_>>>(),
527 core::mem::size_of::<usize>()
528 );
529 assert_eq!(
530 core::mem::size_of::<Result<(), RawReportMut<'_>>>(),
531 core::mem::size_of::<usize>()
532 );
533 assert_eq!(
534 core::mem::size_of::<Result<String, RawReportMut<'_>>>(),
535 core::mem::size_of::<String>()
536 );
537 assert_eq!(
538 core::mem::size_of::<Option<Option<RawReportMut<'_>>>>(),
539 core::mem::size_of::<Option<usize>>()
540 );
541 }
542
543 #[test]
544 fn test_raw_report_get_refs() {
545 let report = RawReport::new::<i32, HandlerI32>(789, vec![], vec![]);
546 let report_ref = report.as_ref();
547
548 // Accessing the pointer multiple times should be safe and consistent
549 let ptr1 = report_ref.as_ptr();
550 let ptr2 = report_ref.as_ptr();
551 assert_eq!(ptr1, ptr2);
552 }
553
554 #[test]
555 fn test_raw_report_clone_arc() {
556 // Test that Arc cloning maintains safety
557 let report = RawReport::new::<i32, HandlerI32>(123, vec![], vec![]);
558 let report_ref = report.as_ref();
559
560 assert_eq!(report_ref.strong_count(), 1);
561
562 // Original should have valid data
563 assert_eq!(report_ref.context_type_id(), TypeId::of::<i32>());
564
565 // Clone should work and maintain same type
566 // SAFETY: There are no assumptions on single ownership
567 let cloned = unsafe { report_ref.clone_arc() };
568 let cloned_ref = cloned.as_ref();
569
570 assert_eq!(report_ref.strong_count(), 2);
571 assert_eq!(cloned_ref.strong_count(), 2);
572
573 // Both should have same type and vtable
574 assert_eq!(report_ref.context_type_id(), cloned_ref.context_type_id());
575 assert!(core::ptr::eq(report_ref.vtable(), cloned_ref.vtable()));
576
577 core::mem::drop(cloned);
578
579 // After dropping the strong count should go back down
580 assert_eq!(report_ref.strong_count(), 1);
581 }
582
583 #[test]
584 fn test_raw_attachment_downcast() {
585 let int_report = RawReport::new::<i32, HandlerI32>(42, vec![], vec![]);
586 let string_report =
587 RawReport::new::<String, HandlerString>(String::from("test"), vec![], vec![]);
588
589 let int_ref = int_report.as_ref();
590 let string_ref = string_report.as_ref();
591
592 // Are TypeIds what we expect?
593 assert_eq!(int_ref.context_type_id(), TypeId::of::<i32>());
594 assert_eq!(string_ref.context_type_id(), TypeId::of::<String>());
595
596 // The vtables should be different
597 assert!(!core::ptr::eq(int_ref.vtable(), string_ref.vtable()));
598
599 // Correct downcasting should work
600 assert_eq!(unsafe { int_ref.context_downcast_unchecked::<i32>() }, &42);
601 assert_eq!(
602 unsafe { string_ref.context_downcast_unchecked::<String>() },
603 "test"
604 );
605 }
606
607 #[test]
608 fn test_raw_report_children() {
609 let child = RawReport::new::<i32, HandlerI32>(1, vec![], vec![]);
610 let parent = RawReport::new::<i32, HandlerI32>(0, vec![child], vec![]);
611
612 let parent_ref = parent.as_ref();
613 assert_eq!(parent_ref.context_type_id(), TypeId::of::<i32>());
614 assert_eq!(
615 unsafe { parent_ref.context_downcast_unchecked::<i32>() },
616 &0
617 );
618
619 // Parent should have one child
620 let children = parent_ref.children();
621 assert_eq!(children.len(), 1);
622
623 // Child should be accessible safely
624 let child_ref = children[0].as_ref();
625 assert_eq!(child_ref.context_type_id(), TypeId::of::<i32>());
626 assert_eq!(child_ref.children().len(), 0);
627 assert_eq!(unsafe { child_ref.context_downcast_unchecked::<i32>() }, &1);
628
629 // Both should have same vtable (same type)
630 assert!(core::ptr::eq(parent_ref.vtable(), child_ref.vtable()));
631 }
632
633 #[test]
634 fn test_raw_report_with_attachments() {
635 use crate::{attachment::RawAttachment, handlers::AttachmentHandler};
636
637 // Create a simple attachment handler for i32
638 struct AttachmentHandlerI32;
639 impl AttachmentHandler<i32> for AttachmentHandlerI32 {
640 fn display(value: &i32, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
641 fmt::Display::fmt(value, formatter)
642 }
643
644 fn debug(value: &i32, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
645 fmt::Debug::fmt(value, formatter)
646 }
647 }
648
649 // Create some attachments
650 let attachment1 = RawAttachment::new::<i32, AttachmentHandlerI32>(100);
651 let attachment2 = RawAttachment::new::<i32, AttachmentHandlerI32>(200);
652
653 // Create a child report with one attachment
654 let child = RawReport::new::<i32, HandlerI32>(1, vec![], vec![attachment1]);
655
656 // Create a parent report with the child and another attachment
657 let parent = RawReport::new::<i32, HandlerI32>(0, vec![child], vec![attachment2]);
658
659 let parent_ref = parent.as_ref();
660 assert_eq!(parent_ref.context_type_id(), TypeId::of::<i32>());
661 assert_eq!(
662 unsafe { parent_ref.context_downcast_unchecked::<i32>() },
663 &0
664 );
665
666 // Parent should have one child and one attachment
667 let children = parent_ref.children();
668 let attachments = parent_ref.attachments();
669 assert_eq!(children.len(), 1);
670 assert_eq!(attachments.len(), 1);
671
672 // Child should be accessible safely and have one attachment
673 let child_ref = children[0].as_ref();
674 assert_eq!(child_ref.context_type_id(), TypeId::of::<i32>());
675 assert_eq!(unsafe { child_ref.context_downcast_unchecked::<i32>() }, &1);
676 assert_eq!(child_ref.children().len(), 0);
677 assert_eq!(child_ref.attachments().len(), 1);
678
679 // Check attachment downcasting works
680 let parent_attachment_ref = attachments[0].as_ref();
681 let child_attachment_ref = child_ref.attachments()[0].as_ref();
682
683 assert_eq!(
684 parent_attachment_ref.attachment_type_id(),
685 TypeId::of::<i32>()
686 );
687 assert_eq!(
688 child_attachment_ref.attachment_type_id(),
689 TypeId::of::<i32>()
690 );
691
692 // Downcast attachments and verify values
693 assert_eq!(
694 unsafe { *parent_attachment_ref.attachment_downcast_unchecked::<i32>() },
695 200
696 );
697 assert_eq!(
698 unsafe { *child_attachment_ref.attachment_downcast_unchecked::<i32>() },
699 100
700 );
701
702 // Both reports should have same vtable (same context type)
703 assert!(core::ptr::eq(parent_ref.vtable(), child_ref.vtable()));
704 }
705
706 #[test]
707 fn test_raw_report_mut_basic() {
708 let mut report = RawReport::new::<i32, HandlerI32>(789, vec![], vec![]);
709
710 // SAFETY: We have unique ownership of the report
711 let mut report_mut = unsafe { report.as_mut() };
712
713 // Test that we can get a reference from the mutable reference
714 let report_ref = report_mut.as_ref();
715 assert_eq!(report_ref.context_type_id(), TypeId::of::<i32>());
716 assert_eq!(
717 unsafe { report_ref.context_downcast_unchecked::<i32>() },
718 &789
719 );
720
721 // Test reborrow functionality
722 let reborrowed = report_mut.reborrow();
723 let ref_from_reborrow = reborrowed.as_ref();
724 assert_eq!(ref_from_reborrow.context_type_id(), TypeId::of::<i32>());
725 assert_eq!(
726 unsafe { ref_from_reborrow.context_downcast_unchecked::<i32>() },
727 &789
728 );
729
730 // Test into_mut_ptr
731 let ptr = report_mut.into_mut_ptr();
732 assert!(!ptr.is_null());
733 }
734
735 #[test]
736 fn test_raw_report_mut_reborrow_lifetime() {
737 let mut report =
738 RawReport::new::<String, HandlerString>(String::from("test"), vec![], vec![]);
739
740 // SAFETY: We have unique ownership of the report
741 let mut report_mut = unsafe { report.as_mut() };
742
743 // Test that reborrow works with different lifetimes
744 {
745 let short_reborrow = report_mut.reborrow();
746 let ref_from_short = short_reborrow.as_ref();
747 assert_eq!(ref_from_short.context_type_id(), TypeId::of::<String>());
748 assert_eq!(
749 unsafe { ref_from_short.context_downcast_unchecked::<String>() },
750 "test"
751 );
752 }
753
754 // Original mutable reference should still be usable
755 let final_ref = report_mut.as_ref();
756 assert_eq!(final_ref.context_type_id(), TypeId::of::<String>());
757 assert_eq!(
758 unsafe { final_ref.context_downcast_unchecked::<String>() },
759 "test"
760 );
761 }
762
763 #[test]
764 fn test_raw_report_mut_with_children() {
765 let child = RawReport::new::<i32, HandlerI32>(1, vec![], vec![]);
766 let mut parent = RawReport::new::<i32, HandlerI32>(0, vec![child], vec![]);
767
768 // SAFETY: We have unique ownership of the parent report
769 let mut parent_mut = unsafe { parent.as_mut() };
770
771 let parent_ref = parent_mut.as_ref();
772 assert_eq!(parent_ref.context_type_id(), TypeId::of::<i32>());
773 assert_eq!(
774 unsafe { parent_ref.context_downcast_unchecked::<i32>() },
775 &0
776 );
777
778 // Check that children are still accessible through the reference
779 let children = parent_ref.children();
780 assert_eq!(children.len(), 1);
781
782 let child_ref = children[0].as_ref();
783 assert_eq!(child_ref.context_type_id(), TypeId::of::<i32>());
784 assert_eq!(unsafe { child_ref.context_downcast_unchecked::<i32>() }, &1);
785
786 // Test reborrow with children
787 let reborrowed = parent_mut.reborrow();
788 let reborrow_ref = reborrowed.as_ref();
789 let reborrow_children = reborrow_ref.children();
790 assert_eq!(reborrow_children.len(), 1);
791 assert_eq!(
792 reborrow_children[0].as_ref().context_type_id(),
793 TypeId::of::<i32>()
794 );
795 assert_eq!(
796 unsafe {
797 reborrow_children[0]
798 .as_ref()
799 .context_downcast_unchecked::<i32>()
800 },
801 &1
802 );
803 }
804
805 #[test]
806 fn test_raw_report_mut_ptr_consistency() {
807 let mut report = RawReport::new::<i32, HandlerI32>(42, vec![], vec![]);
808
809 // Get immutable reference pointer first
810 let immut_ref = report.as_ref();
811 let immut_ptr = immut_ref.as_ptr();
812 // SAFETY: We have unique ownership of the report
813 let report_mut = unsafe { report.as_mut() };
814
815 // Get mutable pointer
816 let mut_ptr = report_mut.into_mut_ptr();
817
818 // Both pointers should point to the same location
819 assert_eq!(immut_ptr, mut_ptr as *const _);
820 }
821 #[test]
822 fn test_send_sync() {
823 static_assertions::assert_not_impl_any!(RawReport: Send, Sync);
824 static_assertions::assert_not_impl_any!(RawReportRef<'_>: Send, Sync);
825 static_assertions::assert_not_impl_any!(RawReportMut<'_>: Send, Sync);
826 }
827}