rootcause_internals/report/data.rs
1//! `ReportData<C>` wrapper and field access.
2//!
3//! This module encapsulates the fields of [`ReportData`], ensuring they are
4//! only visible within this module. This visibility restriction guarantees the
5//! safety invariant: **the vtable type must always match the actual context
6//! type**.
7//!
8//! # Safety Invariant
9//!
10//! Since [`ReportData`] can only be constructed via [`ReportData::new`] (which
11//! creates matching vtable and context), and fields cannot be modified after
12//! construction (no `pub` or `pub(crate)` fields), the types remain in sync
13//! throughout the value's lifetime.
14//!
15//! # `#[repr(C)]` Layout
16//!
17//! The `#[repr(C)]` attribute enables safe field projection even when the type
18//! parameter `C` is erased. This allows accessing the vtable, children, and
19//! attachments fields from a pointer to `ReportData<Erased>` without
20//! constructing an invalid reference to the full struct.
21
22use alloc::vec::Vec;
23use core::ptr::NonNull;
24
25use crate::{
26 attachment::RawAttachment,
27 handlers::ContextHandler,
28 report::{
29 raw::{RawReport, RawReportMut, RawReportRef},
30 vtable::ReportVtable,
31 },
32 util::Erased,
33};
34
35/// Type-erased report data structure with vtable-based dispatch.
36///
37/// This struct uses `#[repr(C)]` to enable safe field access in type-erased
38/// contexts, allowing access to the vtable and other fields even when the
39/// concrete context type `C` is unknown.
40#[repr(C)]
41pub(crate) struct ReportData<C: 'static> {
42 /// Reference to the vtable of this report
43 ///
44 /// # Safety
45 ///
46 /// The following safety invariants are guaranteed to be upheld as long as
47 /// this struct exists:
48 ///
49 /// 1. The vtable must always point to a `ReportVtable` created for the
50 /// actual context type `C` stored below. This is true even when accessed
51 /// via type-erased pointers.
52 vtable: &'static ReportVtable,
53 /// The children of this report
54 children: Vec<RawReport>,
55 /// The attachments of this report
56 attachments: Vec<RawAttachment>,
57 /// The context data of this report
58 context: C,
59}
60
61impl<C: 'static> ReportData<C> {
62 /// Creates a new [`ReportData`] with the specified handler, context,
63 /// children and attachments.
64 ///
65 /// This method creates the vtable for type-erased dispatch and pairs it
66 /// with the report data.
67 #[inline]
68 pub(super) fn new<H: ContextHandler<C>>(
69 context: C,
70 children: Vec<RawReport>,
71 attachments: Vec<RawAttachment>,
72 ) -> Self {
73 Self {
74 vtable: ReportVtable::new::<C, H>(),
75 children,
76 attachments,
77 context,
78 }
79 }
80}
81
82impl RawReport {
83 /// Deconstructs this report into its context, children, and attachments.
84 ///
85 /// # Safety
86 ///
87 /// The caller must ensure:
88 ///
89 /// 1. The type `C` matches the actual context type stored in the
90 /// [`ReportData`]
91 /// 2. This is the only existing reference pointing to the inner
92 /// [`ReportData`]
93 pub unsafe fn into_parts<C: 'static>(self) -> (C, Vec<RawReport>, Vec<RawAttachment>) {
94 let ptr: NonNull<ReportData<Erased>> = self.into_non_null();
95 let ptr: NonNull<ReportData<C>> = ptr.cast::<ReportData<C>>();
96 let ptr: *const ReportData<C> = ptr.as_ptr();
97
98 // SAFETY:
99 // 1. The pointer is valid and came from `Arc::into_raw` (guaranteed by
100 // RawReport construction)
101 // 2. After `from_raw` the `ptr` is not accessed.
102 let arc = unsafe { triomphe::Arc::<ReportData<C>>::from_raw(ptr) };
103
104 match triomphe::Arc::try_unique(arc) {
105 Ok(unique) => {
106 let data = triomphe::UniqueArc::into_inner(unique);
107 (data.context, data.children, data.attachments)
108 }
109 Err(_) => {
110 // Note: We could use `unreachable_unchecked` here in release builds for
111 // performance, but `into_parts` is not expected to be used in
112 // performance-critical paths, so a normal panic is preferable for
113 // better debugging.
114 unreachable!("Caller did not fulfill the guarantee that pointer is unique")
115 }
116 }
117 }
118}
119
120impl<'a> RawReportRef<'a> {
121 /// Returns a reference to the [`ReportVtable`] of this report.
122 ///
123 /// The returned vtable is guaranteed to match the context type stored in
124 /// the [`ReportData`].
125 #[inline]
126 pub(super) fn vtable(self) -> &'static ReportVtable {
127 let ptr = self.as_ptr();
128 // SAFETY: The safety requirements for `&raw const (*ptr).vtable` are upheld:
129 // 1. `ptr` is a valid pointer to a live `ReportData<C>` (for some `C`) as
130 // guaranteed by `RawReportRef`'s invariants
131 // 2. `ReportData<C>` is `#[repr(C)]`, so the `vtable` field is at a consistent
132 // offset regardless of the type parameter `C`
133 // 3. We avoid creating a reference to the full `ReportData` struct, which would
134 // be UB since we don't know the correct type parameter
135 let vtable_ptr: *const &'static ReportVtable = unsafe {
136 // @add-unsafe-context: ReportData
137 // @add-unsafe-context: crate::util::Erased
138 &raw const (*ptr).vtable
139 };
140
141 // SAFETY: The safety requirements for dereferencing `vtable_ptr` are upheld:
142 // 1. The pointer is valid and properly aligned because it points to the first
143 // field of a valid `ReportData<C>` instance
144 // 2. The `vtable` field is initialized in `ReportData::new` and never modified,
145 // so it contains a valid `&'static ReportVtable` value
146 unsafe { *vtable_ptr }
147 }
148
149 /// Returns the child reports of this report.
150 #[inline]
151 pub fn children(self) -> &'a Vec<RawReport> {
152 let ptr: *const ReportData<Erased> = self.as_ptr();
153
154 // SAFETY: The safety requirements for `&raw const (*ptr).children` are upheld:
155 // 1. `ptr` is a valid pointer to a live `ReportData<C>` (for some `C`) as
156 // guaranteed by `RawReportRef`'s invariants
157 // 2. `ReportData<C>` is `#[repr(C)]`, so the `children` field is at a
158 // consistent offset regardless of the type parameter `C`
159 // 3. We avoid creating a reference to the full `ReportData` struct, which would
160 // be UB since we don't know the correct type parameter
161 let children_ptr: *const Vec<RawReport> = unsafe {
162 // @add-unsafe-context: ReportData
163 &raw const (*ptr).children
164 };
165
166 // SAFETY: We turn the `*const` pointer into a `&'a` reference. This is valid
167 // because the existence of the `RawReportRef<'a>` already implies that
168 // we have readable access to the report for the 'a lifetime.
169 unsafe { &*children_ptr }
170 }
171
172 /// Returns the attachments of this report.
173 #[inline]
174 pub fn attachments(self) -> &'a Vec<RawAttachment> {
175 let ptr = self.as_ptr();
176
177 // SAFETY: The safety requirements for `&raw const (*ptr).attachments` are
178 // upheld:
179 // 1. `ptr` is a valid pointer to a live `ReportData<C>` (for some `C`) as
180 // guaranteed by `RawReportRef`'s invariants
181 // 2. `ReportData<C>` is `#[repr(C)]`, so the `attachments` field is at a
182 // consistent offset regardless of the type parameter `C`
183 // 3. We avoid creating a reference to the full `ReportData` struct, which would
184 // be UB since we don't know the correct type parameter
185 let attachments_ptr: *const Vec<RawAttachment> = unsafe {
186 // @add-unsafe-context: ReportData
187 &raw const (*ptr).attachments
188 };
189
190 // SAFETY: We turn the `*const` pointer into a `&'a` reference. This is valid
191 // because the existence of the `RawReportRef<'a>` already implies that
192 // we have readable access to the report for the 'a lifetime.
193 unsafe { &*attachments_ptr }
194 }
195
196 /// Downcasts the context to the specified type and returns a reference.
197 ///
198 /// # Safety
199 ///
200 /// The caller must ensure:
201 ///
202 /// 1. The type `C` matches the actual context type stored in the
203 /// [`ReportData`]
204 #[inline]
205 pub unsafe fn context_downcast_unchecked<C: 'static>(self) -> &'a C {
206 // SAFETY:
207 // 1. Guaranteed by the caller
208 let this = unsafe { self.cast_inner::<C>() };
209 &this.context
210 }
211}
212
213impl<'a> RawReportMut<'a> {
214 /// Gets a mutable reference to the child reports.
215 ///
216 /// # Safety
217 ///
218 /// The caller must ensure:
219 ///
220 /// 1. In case there are other references to the same report and they make
221 /// assumptions about the report children being `Send+Sync`, then those
222 /// assumptions must be upheld when modifying the children.
223 #[inline]
224 pub unsafe fn into_children_mut(self) -> &'a mut Vec<RawReport> {
225 let ptr = self.into_mut_ptr();
226
227 // SAFETY: The safety requirements for `&raw mut (*ptr).children` are upheld:
228 // 1. `ptr` is a valid pointer to a live `ReportData<C>` (for some `C`) as
229 // guaranteed by `RawReportMut`'s invariants
230 // 2. `ReportData<C>` is `#[repr(C)]`, so the `children` field is at a
231 // consistent offset regardless of the type parameter `C`
232 // 3. We avoid creating a reference to the full `ReportData` struct, which would
233 // be UB since we don't know the correct type parameter
234 let children_ptr: *mut Vec<RawReport> = unsafe {
235 // @add-unsafe-context: ReportData
236 &raw mut (*ptr).children
237 };
238
239 // SAFETY: We turn the `*mut` pointer into a `&'a mut` reference. This is valid
240 // because the existence of the `RawReportMut<'a>` already implied that
241 // nobody else has mutable access to the report for the 'a lifetime.
242 unsafe { &mut *children_ptr }
243 }
244
245 /// Deconstructs the `RawReportMut` and returns a mutable reference to the
246 /// attachments vector.
247 ///
248 /// # Safety
249 ///
250 /// The caller must ensure:
251 ///
252 /// 1. In case there are other references to the same report and they make
253 /// assumptions about the report attachments being `Send+Sync`, then
254 /// those assumptions must be upheld when modifying the attachments.
255 #[inline]
256 pub unsafe fn into_attachments_mut(self) -> &'a mut Vec<RawAttachment> {
257 let ptr = self.into_mut_ptr();
258
259 // SAFETY: The safety requirements for `&raw mut (*ptr).attachments` are upheld:
260 // 1. `ptr` is a valid pointer to a live `ReportData<C>` (for some `C`) as
261 // guaranteed by `RawReportMut`'s invariants
262 // 2. `ReportData<C>` is `#[repr(C)]`, so the `attachments` field is at a
263 // consistent offset regardless of the type parameter `C`
264 // 3. We avoid creating a reference to the full `ReportData` struct, which would
265 // be UB since we don't know the correct type parameter
266 let attachments_ptr: *mut Vec<RawAttachment> = unsafe {
267 // @add-unsafe-context: ReportData
268 &raw mut (*ptr).attachments
269 };
270
271 // SAFETY: We turn the `*mut` pointer into a `&'a mut` reference. This is valid
272 // because the existence of the `RawReportMut<'a>` already implied that
273 // nobody else has mutable access to the report for the 'a lifetime.
274 unsafe { &mut *attachments_ptr }
275 }
276
277 /// Downcasts the context to the specified type and returns a mutable
278 /// reference.
279 ///
280 /// # Safety
281 ///
282 /// The caller must ensure:
283 ///
284 /// 1. The type `C` matches the actual context type stored in the
285 /// [`ReportData`]
286 #[inline]
287 pub unsafe fn into_context_downcast_unchecked<C: 'static>(self) -> &'a mut C {
288 // SAFETY:
289 // 1. Guaranteed by the caller
290 let this = unsafe { self.cast_inner::<C>() };
291 &mut this.context
292 }
293}
294
295#[cfg(test)]
296mod tests {
297 use super::*;
298
299 #[test]
300 fn test_report_data_field_offsets() {
301 // Test that fields are accessible in the expected order for type-erased access
302 use core::mem::{offset_of, size_of};
303
304 fn check<T>() {
305 // Verify field order: vtable, children, attachments, context
306 assert_eq!(offset_of!(ReportData<T>, vtable), 0);
307 assert_eq!(
308 offset_of!(ReportData<T>, children),
309 size_of::<&'static ReportVtable>()
310 );
311 assert_eq!(
312 offset_of!(ReportData<T>, attachments),
313 size_of::<&'static ReportVtable>() + size_of::<Vec<RawAttachment>>()
314 );
315 assert!(
316 offset_of!(ReportData<T>, context)
317 >= size_of::<&'static ReportVtable>()
318 + size_of::<Vec<RawAttachment>>()
319 + size_of::<Vec<RawReport>>()
320 );
321 }
322
323 #[repr(align(32))]
324 struct LargeAlignment {
325 _value: u8,
326 }
327
328 check::<u8>();
329 check::<i32>();
330 check::<[u64; 4]>();
331 check::<i32>();
332 check::<LargeAlignment>();
333 }
334}