rootcause_internals/report/data.rs
1//! `ReportData<C>` wrapper and field access.
2//!
3//! This module encapsulates the fields of [`ReportData`], ensuring they are
4//! only visible within this module. This visibility restriction guarantees the
5//! safety invariant: **the vtable type must always match the actual context
6//! type**.
7//!
8//! # Safety Invariant
9//!
10//! Since [`ReportData`] can only be constructed via [`ReportData::new`] (which
11//! creates matching vtable and context), and fields cannot be modified after
12//! construction (no `pub` or `pub(crate)` fields), the types remain in sync
13//! throughout the value's lifetime.
14//!
15//! # `#[repr(C)]` Layout
16//!
17//! The `#[repr(C)]` attribute enables safe field projection even when the type
18//! parameter `C` is erased. This allows accessing the vtable, children, and
19//! attachments fields from a pointer to `ReportData<Erased>` without
20//! constructing an invalid reference to the full struct.
21
22use alloc::vec::Vec;
23use core::ptr::NonNull;
24
25use crate::{
26 attachment::RawAttachment,
27 handlers::ContextHandler,
28 report::{
29 raw::{RawReport, RawReportMut, RawReportRef},
30 vtable::ReportVtable,
31 },
32 util::Erased,
33};
34
35/// Type-erased report data structure with vtable-based dispatch.
36///
37/// This struct uses `#[repr(C)]` to enable safe field access in type-erased
38/// contexts, allowing access to the vtable and other fields even when the
39/// concrete context type `C` is unknown.
40#[repr(C)]
41pub(crate) struct ReportData<C: 'static> {
42 /// Reference to the vtable of this report
43 ///
44 /// # Safety
45 ///
46 /// The following safety invariants are guaranteed to be upheld as long as
47 /// this struct exists:
48 ///
49 /// 1. The vtable must always point to a `ReportVtable` created for the
50 /// actual context type `C` stored below. This is true even when accessed
51 /// via type-erased pointers.
52 vtable: &'static ReportVtable,
53 /// The children of this report
54 children: Vec<RawReport>,
55 /// The attachments of this report
56 attachments: Vec<RawAttachment>,
57 /// The context data of this report
58 context: C,
59}
60
61impl<C: 'static> ReportData<C> {
62 /// Creates a new [`ReportData`] with the specified handler, context,
63 /// children and attachments.
64 ///
65 /// This method creates the vtable for type-erased dispatch and pairs it
66 /// with the report data.
67 #[inline]
68 pub(super) fn new<H: ContextHandler<C>>(
69 context: C,
70 children: Vec<RawReport>,
71 attachments: Vec<RawAttachment>,
72 ) -> Self {
73 Self {
74 vtable: ReportVtable::new::<C, H>(),
75 children,
76 attachments,
77 context,
78 }
79 }
80}
81
82impl RawReport {
83 /// Deconstructs this report into its context, children, and attachments.
84 ///
85 /// # Safety
86 ///
87 /// The caller must ensure:
88 ///
89 /// 1. The type `C` matches the actual context type stored in the
90 /// [`ReportData`]
91 /// 2. This is the only existing reference pointing to the inner
92 /// [`ReportData`]
93 pub unsafe fn into_parts<C: 'static>(self) -> (C, Vec<RawReport>, Vec<RawAttachment>) {
94 let ptr: NonNull<ReportData<Erased>> = self.into_non_null();
95 let ptr: NonNull<ReportData<C>> = ptr.cast::<ReportData<C>>();
96 let ptr: *const ReportData<C> = ptr.as_ptr();
97
98 // SAFETY:
99 // 1. The pointer is valid and came from `Arc::into_raw` (guaranteed by
100 // RawReport construction)
101 // 2. After `from_raw` the `ptr` is not accessed.
102 let arc = unsafe { triomphe::Arc::<ReportData<C>>::from_raw(ptr) };
103
104 match triomphe::Arc::try_unique(arc) {
105 Ok(unique) => {
106 let data = triomphe::UniqueArc::into_inner(unique);
107 (data.context, data.children, data.attachments)
108 }
109 Err(_) => {
110 // Note: We could use `unreachable_unchecked` here in release builds for
111 // performance, but `into_parts` is not expected to be used in
112 // performance-critical paths, so a normal panic is preferable for
113 // better debugging.
114 unreachable!("Caller did not fulfill the guarantee that pointer is unique")
115 }
116 }
117 }
118}
119
120impl<'a> RawReportRef<'a> {
121 /// Returns a reference to the [`ReportVtable`] of this report.
122 ///
123 /// The returned vtable is guaranteed to match the context type stored in
124 /// the [`ReportData`].
125 #[inline]
126 pub(super) fn vtable(self) -> &'static ReportVtable {
127 let ptr = self.as_ptr();
128 // SAFETY: The safety requirements for `&raw const (*ptr).vtable` are upheld:
129 // 1. `ptr` is a valid pointer to a live `ReportData<C>` (for some `C`) as
130 // guaranteed by `RawReportRef`'s invariants
131 // 2. `ReportData<C>` is `#[repr(C)]`, so the `vtable` field is at a consistent
132 // offset regardless of the type parameter `C`
133 // 3. We avoid creating a reference to the full `ReportData` struct, which would
134 // be UB since we don't know the correct type parameter
135 let vtable_ptr: *const &'static ReportVtable = unsafe {
136 // @add-unsafe-context: ReportData
137 &raw const (*ptr).vtable
138 };
139
140 // SAFETY: The safety requirements for dereferencing `vtable_ptr` are upheld:
141 // 1. The pointer is valid and properly aligned because it points to the first
142 // field of a valid `ReportData<C>` instance
143 // 2. The `vtable` field is initialized in `ReportData::new` and never modified,
144 // so it contains a valid `&'static ReportVtable` value
145 unsafe { *vtable_ptr }
146 }
147
148 /// Returns the child reports of this report.
149 #[inline]
150 pub fn children(self) -> &'a Vec<RawReport> {
151 let ptr: *const ReportData<Erased> = self.as_ptr();
152
153 // SAFETY: The safety requirements for `&raw const (*ptr).children` are upheld:
154 // 1. `ptr` is a valid pointer to a live `ReportData<C>` (for some `C`) as
155 // guaranteed by `RawReportRef`'s invariants
156 // 2. `ReportData<C>` is `#[repr(C)]`, so the `children` field is at a
157 // consistent offset regardless of the type parameter `C`
158 // 3. We avoid creating a reference to the full `ReportData` struct, which would
159 // be UB since we don't know the correct type parameter
160 let children_ptr: *const Vec<RawReport> = unsafe {
161 // @add-unsafe-context: ReportData
162 &raw const (*ptr).children
163 };
164
165 // SAFETY: We turn the `*const` pointer into a `&'a` reference. This is valid
166 // because the existence of the `RawReportRef<'a>` already implies that
167 // we have readable access to the report for the 'a lifetime.
168 unsafe { &*children_ptr }
169 }
170
171 /// Returns the attachments of this report.
172 #[inline]
173 pub fn attachments(self) -> &'a Vec<RawAttachment> {
174 let ptr = self.as_ptr();
175
176 // SAFETY: The safety requirements for `&raw const (*ptr).attachments` are
177 // upheld:
178 // 1. `ptr` is a valid pointer to a live `ReportData<C>` (for some `C`) as
179 // guaranteed by `RawReportRef`'s invariants
180 // 2. `ReportData<C>` is `#[repr(C)]`, so the `attachments` field is at a
181 // consistent offset regardless of the type parameter `C`
182 // 3. We avoid creating a reference to the full `ReportData` struct, which would
183 // be UB since we don't know the correct type parameter
184 let attachments_ptr: *const Vec<RawAttachment> = unsafe {
185 // @add-unsafe-context: ReportData
186 &raw const (*ptr).attachments
187 };
188
189 // SAFETY: We turn the `*const` pointer into a `&'a` reference. This is valid
190 // because the existence of the `RawReportRef<'a>` already implies that
191 // we have readable access to the report for the 'a lifetime.
192 unsafe { &*attachments_ptr }
193 }
194
195 /// Downcasts the context to the specified type and returns a reference.
196 ///
197 /// # Safety
198 ///
199 /// The caller must ensure:
200 ///
201 /// 1. The type `C` matches the actual context type stored in the
202 /// [`ReportData`]
203 #[inline]
204 pub unsafe fn context_downcast_unchecked<C: 'static>(self) -> &'a C {
205 // SAFETY:
206 // 1. Guaranteed by the caller
207 let this = unsafe { self.cast_inner::<C>() };
208 &this.context
209 }
210}
211
212impl<'a> RawReportMut<'a> {
213 /// Gets a mutable reference to the child reports.
214 ///
215 /// # Safety
216 ///
217 /// The caller must ensure:
218 ///
219 /// 1. In case there are other references to the same report and they make
220 /// assumptions about the report children being `Send+Sync`, then those
221 /// assumptions must be upheld when modifying the children.
222 #[inline]
223 pub unsafe fn into_children_mut(self) -> &'a mut Vec<RawReport> {
224 let ptr = self.into_mut_ptr();
225
226 // SAFETY: The safety requirements for `&raw mut (*ptr).children` are upheld:
227 // 1. `ptr` is a valid pointer to a live `ReportData<C>` (for some `C`) as
228 // guaranteed by `RawReportMut`'s invariants
229 // 2. `ReportData<C>` is `#[repr(C)]`, so the `children` field is at a
230 // consistent offset regardless of the type parameter `C`
231 // 3. We avoid creating a reference to the full `ReportData` struct, which would
232 // be UB since we don't know the correct type parameter
233 let children_ptr: *mut Vec<RawReport> = unsafe {
234 // @add-unsafe-context: ReportData
235 &raw mut (*ptr).children
236 };
237
238 // SAFETY: We turn the `*mut` pointer into a `&'a mut` reference. This is valid
239 // because the existence of the `RawReportMut<'a>` already implied that
240 // nobody else has mutable access to the report for the 'a lifetime.
241 unsafe { &mut *children_ptr }
242 }
243
244 /// Deconstructs the `RawReportMut` and returns a mutable reference to the
245 /// attachments vector.
246 ///
247 /// # Safety
248 ///
249 /// The caller must ensure:
250 ///
251 /// 1. In case there are other references to the same report and they make
252 /// assumptions about the report children being `Send+Sync`, then those
253 /// assumptions must be upheld when modifying the children.
254 #[inline]
255 pub unsafe fn into_attachments_mut(self) -> &'a mut Vec<RawAttachment> {
256 let ptr = self.into_mut_ptr();
257
258 // SAFETY: The safety requirements for `&raw mut (*ptr).attachments` are upheld:
259 // 1. `ptr` is a valid pointer to a live `ReportData<C>` (for some `C`) as
260 // guaranteed by `RawReportMut`'s invariants
261 // 2. `ReportData<C>` is `#[repr(C)]`, so the `attachments` field is at a
262 // consistent offset regardless of the type parameter `C`
263 // 3. We avoid creating a reference to the full `ReportData` struct, which would
264 // be UB since we don't know the correct type parameter
265 let attachments_ptr: *mut Vec<RawAttachment> = unsafe {
266 // @add-unsafe-context: ReportData
267 &raw mut (*ptr).attachments
268 };
269
270 // SAFETY: We turn the `*mut` pointer into a `&'a mut` reference. This is valid
271 // because the existence of the `RawReportMut<'a>` already implied that
272 // nobody else has mutable access to the report for the 'a lifetime.
273 unsafe { &mut *attachments_ptr }
274 }
275
276 /// Downcasts the context to the specified type and returns a mutable
277 /// reference.
278 ///
279 /// # Safety
280 ///
281 /// The caller must ensure:
282 ///
283 /// 1. The type `C` matches the actual context type stored in the
284 /// [`ReportData`]
285 #[inline]
286 pub unsafe fn into_context_downcast_unchecked<C: 'static>(self) -> &'a mut C {
287 // SAFETY:
288 // 1. Guaranteed by the caller
289 let this = unsafe { self.cast_inner::<C>() };
290 &mut this.context
291 }
292}
293
294#[cfg(test)]
295mod tests {
296 use super::*;
297
298 #[test]
299 fn test_report_data_field_offsets() {
300 // Test that fields are accessible in the expected order for type-erased access
301 use core::mem::{offset_of, size_of};
302
303 fn check<T>() {
304 // Verify field order: vtable, children, attachments, context
305 assert_eq!(offset_of!(ReportData<T>, vtable), 0);
306 assert_eq!(
307 offset_of!(ReportData<T>, children),
308 size_of::<&'static ReportVtable>()
309 );
310 assert_eq!(
311 offset_of!(ReportData<T>, attachments),
312 size_of::<&'static ReportVtable>() + size_of::<Vec<RawAttachment>>()
313 );
314 assert!(
315 offset_of!(ReportData<T>, context)
316 >= size_of::<&'static ReportVtable>()
317 + size_of::<Vec<RawAttachment>>()
318 + size_of::<Vec<RawReport>>()
319 );
320 }
321
322 #[repr(align(32))]
323 struct LargeAlignment {
324 _value: u8,
325 }
326
327 check::<u8>();
328 check::<i32>();
329 check::<[u64; 4]>();
330 check::<i32>();
331 check::<LargeAlignment>();
332 }
333}