rootcause_internals/report/
raw.rs

1//! Type-erased report pointer types.
2//!
3//! This module encapsulates the `ptr` field of [`RawReport`], [`RawReportRef`],
4//! and [`RawReportMut`], ensuring it is only visible within this module. This
5//! visibility restriction guarantees the safety invariant: **the pointer always
6//! comes from `Arc<ReportData<C>>`**.
7//!
8//! # Safety Invariant
9//!
10//! Since the `ptr` field can only be set via [`RawReport::new`] or
11//! [`RawReport::from_arc`] (which create it from `Arc::into_raw`), and cannot
12//! be modified afterward (no `pub` or `pub(crate)` fields), the pointer
13//! provenance remains valid throughout the value's lifetime.
14//!
15//! The [`RawReport::drop`] implementation and reference counting operations
16//! rely on this invariant to safely reconstruct the `Arc` and manage memory.
17//!
18//! # Type Erasure
19//!
20//! The concrete type parameter `C` is erased by casting to
21//! `ReportData<Erased>`. The vtable stored within the `ReportData` provides the
22//! runtime type information needed to safely downcast and format reports.
23//!
24//! # Allocation Strategy
25//!
26//! Unlike attachments (which use `Box`), reports use `triomphe::Arc` for
27//! storage. This enables:
28//! - Cheap cloning through reference counting
29//! - Shared ownership across multiple report references
30//! - Thread-safe sharing when the context type is `Send + Sync`
31
32use alloc::vec::Vec;
33use core::{any::TypeId, ptr::NonNull};
34
35use crate::{
36    attachment::RawAttachment,
37    handlers::{ContextFormattingStyle, ContextHandler, FormattingFunction},
38    report::data::ReportData,
39    util::Erased,
40};
41
42/// A pointer to a [`ReportData`] that is guaranteed to point to an initialized
43/// instance of a [`ReportData<C>`] for some specific `C`, though we do not know
44/// which actual `C` it is.
45///
46/// However, the pointer is allowed to transition into a non-initialized state
47/// inside the [`RawReport::drop`] method.
48///
49/// The pointer is guaranteed to have been created using
50/// [`triomphe::Arc::into_raw`].
51///
52/// We cannot use a [`triomphe::OffsetArc<ReportData<C>>`] directly, because
53/// that does not allow us to type-erase the `C`.
54#[repr(transparent)]
55pub struct RawReport {
56    /// Pointer to the inner report data
57    ///
58    /// # Safety
59    ///
60    /// The following safety invariants are guaranteed to be upheld as long as
61    /// this struct exists:
62    ///
63    /// 1. The pointer must have been created from a
64    ///    `triomphe::Arc<ReportData<C>>` for some `C` using
65    ///    `triomphe::Arc::into_raw`.
66    /// 2. The pointer retains full provenance over the `Arc` for the entire
67    ///    lifetime of this object (i.e., it was not derived from a `&T`)
68    /// 3. The pointer will point to the same `ReportData<C>` for the entire
69    ///    lifetime of this object.
70    ptr: NonNull<ReportData<Erased>>,
71}
72
73impl RawReport {
74    /// Creates a new [`RawReport`] from a [`triomphe::Arc<ReportData<C>>`].
75    #[inline]
76    pub(super) fn from_arc<C: 'static>(data: triomphe::Arc<ReportData<C>>) -> Self {
77        let ptr: *const ReportData<C> = triomphe::Arc::into_raw(data);
78        let ptr: *mut ReportData<Erased> = ptr.cast::<ReportData<Erased>>().cast_mut();
79
80        // SAFETY:
81        // 1. Triomphe guarantees that `Arc::into_raw` returns a non-null pointer.
82        let ptr: NonNull<ReportData<Erased>> = unsafe { NonNull::new_unchecked(ptr) };
83
84        Self { ptr }
85    }
86
87    /// Consumes the RawReport without decrementing the reference count and
88    /// returns the inner pointer.
89    #[inline]
90    pub(super) fn into_non_null(self) -> NonNull<ReportData<Erased>> {
91        let ptr = self.ptr;
92        core::mem::forget(self);
93        ptr
94    }
95
96    /// Creates a new [`RawReport`] with the specified handler, context,
97    /// children, and attachments.
98    ///
99    /// The created report will have the supplied context type and handler type.
100    /// It will also have a strong count of 1.
101    #[inline]
102    pub fn new<C, H>(context: C, children: Vec<RawReport>, attachments: Vec<RawAttachment>) -> Self
103    where
104        C: 'static,
105        H: ContextHandler<C>,
106    {
107        let data = triomphe::Arc::new(ReportData::new::<H>(context, children, attachments));
108        Self::from_arc(data)
109    }
110
111    /// Returns a reference to the [`ReportData`] instance.
112    #[inline]
113    pub fn as_ref(&self) -> RawReportRef<'_> {
114        RawReportRef {
115            ptr: self.ptr,
116            _marker: core::marker::PhantomData,
117        }
118    }
119
120    /// Returns a mutable reference to the [`ReportData`] instance.
121    ///
122    /// # Safety
123    ///
124    /// The caller must ensure:
125    ///
126    /// 1. This is the only existing reference pointing to the inner
127    ///    [`ReportData`]. Specifically the strong count of the inner
128    ///    [`triomphe::Arc`] must be `1`.
129    #[inline]
130    pub unsafe fn as_mut(&mut self) -> RawReportMut<'_> {
131        RawReportMut {
132            ptr: self.ptr,
133            _marker: core::marker::PhantomData,
134        }
135    }
136}
137
138impl core::ops::Drop for RawReport {
139    #[inline]
140    fn drop(&mut self) {
141        let vtable = self.as_ref().vtable();
142
143        // SAFETY:
144        // 1. The pointer comes from `Arc::into_raw` (guaranteed by `RawReport::new`)
145        // 2. The vtable returned by `self.as_ref().vtable()` is guaranteed to match the
146        //    data in the `ReportData`.
147        // 3. The pointer is not used after this call (we're in the drop function)
148        unsafe {
149            vtable.drop(self.ptr);
150        }
151    }
152}
153
154/// A lifetime-bound pointer to a [`ReportData`] that is guaranteed to point
155/// to an initialized instance of a [`ReportData<C>`] for some specific `C`,
156/// though we do not know which actual `C` it is.
157///
158/// We cannot use a [`&'a ReportData<C>`] directly, because that would require
159/// us to know the actual type of the context, which we do not.
160///
161/// [`&'a ReportData<C>`]: ReportData
162///
163/// # Safety invariants
164///
165/// This reference behaves like a `&'a ReportData<C>` for some unknown
166/// `C` and upholds the usual safety invariants of shared references:
167///
168/// 1. The pointee is properly initialized for the entire lifetime `'a`.
169/// 2. The pointee is not mutated for the entire lifetime `'a`.
170#[derive(Clone, Copy)]
171#[repr(transparent)]
172pub struct RawReportRef<'a> {
173    /// Pointer to the inner report data
174    ///
175    /// # Safety
176    ///
177    /// The following safety invariants are guaranteed to be upheld as long as
178    /// this struct exists:
179    ///
180    /// 1. The pointer must have been created from a
181    ///    `triomphe::Arc<ReportData<C>>` for some `C` using
182    ///    `triomphe::Arc::into_raw`.
183    /// 2. The pointer retains full provenance over the `Arc` for the entire
184    ///    lifetime of this object (i.e., it was not derived from a `&T`)
185    /// 3. The pointer will point to the same `ReportData<C>` for the entire
186    ///    lifetime of this object.
187    ptr: NonNull<ReportData<Erased>>,
188
189    /// Marker to tell the compiler that we should
190    /// behave the same as a `&'a ReportData<Erased>`
191    _marker: core::marker::PhantomData<&'a ReportData<Erased>>,
192}
193
194impl<'a> RawReportRef<'a> {
195    /// Casts the [`RawReportRef`] to a [`ReportData<C>`] reference.
196    ///
197    /// # Safety
198    ///
199    /// The caller must ensure:
200    ///
201    /// 1. The type `C` matches the actual context type stored in the
202    ///    [`ReportData`]
203    #[inline]
204    pub(super) unsafe fn cast_inner<C>(self) -> &'a ReportData<C> {
205        // Debug assertion to catch type mismatches in case of bugs
206        debug_assert_eq!(self.vtable().type_id(), TypeId::of::<C>());
207
208        let this = self.ptr.cast::<ReportData<C>>();
209        // SAFETY: Converting the NonNull pointer to a reference is sound because:
210        // - The pointer is non-null, properly aligned, and dereferenceable (guaranteed
211        //   by RawReportRef's type invariants)
212        // - The pointee is properly initialized (RawReportRef's doc comment guarantees
213        //   it points to an initialized ReportData<C> for some C)
214        // - The type `C` matches the actual context type (guaranteed by caller)
215        // - Shared access is allowed
216        // - The reference lifetime 'a is valid (tied to RawReportRef<'a>'s lifetime)
217        unsafe { this.as_ref() }
218    }
219
220    /// Returns a [`NonNull`] pointer to the [`ReportData`] instance.
221    #[inline]
222    pub(super) fn as_ptr(self) -> *const ReportData<Erased> {
223        self.ptr.as_ptr()
224    }
225
226    /// Returns the [`TypeId`] of the context.
227    #[inline]
228    pub fn context_type_id(self) -> TypeId {
229        self.vtable().type_id()
230    }
231
232    /// Returns the [`TypeId`] of the context.
233    #[inline]
234    pub fn context_handler_type_id(self) -> TypeId {
235        self.vtable().handler_type_id()
236    }
237
238    /// Returns the source of the context using the [`ContextHandler::source`]
239    /// method specified when the [`ReportData`] was created.
240    #[inline]
241    pub fn context_source(self) -> Option<&'a (dyn core::error::Error + 'static)> {
242        let vtable = self.vtable();
243        // SAFETY:
244        // 1. The vtable returned by `self.vtable()` is guaranteed to match the data in
245        //    the `ReportData`.
246        unsafe { vtable.source(self) }
247    }
248
249    /// Formats the context by using the [`ContextHandler::display`] method
250    /// specified by the handler used to create the [`ReportData`].
251    #[inline]
252    pub fn context_display(self, formatter: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
253        let vtable = self.vtable();
254        // SAFETY:
255        // 1. The vtable returned by `self.vtable()` is guaranteed to match the data in
256        //    the `ReportData`.
257        unsafe { vtable.display(self, formatter) }
258    }
259
260    /// Formats the context by using the [`ContextHandler::debug`] method
261    /// specified by the handler used to create the [`ReportData`].
262    #[inline]
263    pub fn context_debug(self, formatter: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
264        let vtable = self.vtable();
265        // SAFETY:
266        // 1. The vtable returned by `self.vtable()` is guaranteed to match the data in
267        //    the `ReportData`.
268        unsafe { vtable.debug(self, formatter) }
269    }
270
271    /// The formatting style preferred by the context when formatted as part of
272    /// a report.
273    ///
274    /// # Arguments
275    ///
276    /// - `report_formatting_function`: Whether the report in which this context
277    ///   will be embedded is being formatted using [`Display`] formatting or
278    ///   [`Debug`]
279    ///
280    /// [`Display`]: core::fmt::Display
281    /// [`Debug`]: core::fmt::Debug
282    #[inline]
283    pub fn preferred_context_formatting_style(
284        self,
285        report_formatting_function: FormattingFunction,
286    ) -> ContextFormattingStyle {
287        let vtable = self.vtable();
288        // SAFETY:
289        // 1. The vtable returned by `self.vtable()` is guaranteed to match the data in
290        //    the `ReportData`.
291        unsafe {
292            // @add-unsafe-context: ReportData
293            vtable.preferred_context_formatting_style(self, report_formatting_function)
294        }
295    }
296
297    /// Clones the inner [`triomphe::Arc`] and returns a new [`RawReport`]
298    /// pointing to the same data.
299    ///
300    /// # Safety
301    ///
302    /// The caller must ensure:
303    ///
304    /// 1. All other references to this report are compatible with shared
305    ///    ownership. Specifically none of them assume that the strong_count is
306    ///    `1`.
307    #[inline]
308    pub unsafe fn clone_arc(self) -> RawReport {
309        let vtable = self.vtable();
310        // SAFETY:
311        // 1. Guaranteed by invariants on this type
312        // 2. Guaranteed by invariants on this type
313        // 3. The vtable returned by `self.vtable()` is guaranteed to match the data in
314        //    the `ReportData`.
315        // 4. Guaranteed by the caller
316        unsafe {
317            // @add-unsafe-context: ReportData
318            vtable.clone_arc(self.ptr)
319        }
320    }
321
322    /// Gets the strong_count of the inner [`triomphe::Arc`].
323    #[inline]
324    pub fn strong_count(self) -> usize {
325        let vtable = self.vtable();
326        // SAFETY:
327        // 1. The vtable returned by `self.vtable()` is guaranteed to match the data in
328        //    the `ReportData`.
329        unsafe {
330            // @add-unsafe-context: ReportData
331            vtable.strong_count(self)
332        }
333    }
334}
335
336/// A mutable lifetime-bound pointer to a [`ReportData`] that is guaranteed to
337/// point to an initialized instance of a [`ReportData<C>`] for some specific
338/// `C`, though we do not know which actual `C` it is.
339///
340/// We cannot use a [`&'a mut ReportData<C>`] directly, because that would
341/// require us to know the actual type of the context, which we do not.
342///
343/// [`&'a mut ReportData<C>`]: ReportData
344///
345/// # Safety invariants
346///
347/// This reference behaves like a `&'a mut ReportData<C>` for some unknown
348/// `C` and upholds the usual safety invariants of mutable references:
349///
350/// 1. The pointee is properly initialized for the entire lifetime `'a`.
351/// 2. The pointee is not aliased for the entire lifetime `'a`.
352/// 3. Like a `&'a mut T`, it is possible to reborrow this reference to a
353///    shorter lifetime. The borrow checker will ensure that original longer
354///    lifetime is not used while the shorter lifetime exists.
355#[repr(transparent)]
356pub struct RawReportMut<'a> {
357    /// Pointer to the inner report data
358    ///
359    /// # Safety
360    ///
361    /// The following safety invariants are guaranteed to be upheld as long as
362    /// this struct exists:
363    ///
364    /// 1. The pointer must have been created from a
365    ///    `triomphe::Arc<ReportData<C>>` for some `C` using
366    ///    `triomphe::Arc::into_raw`.
367    /// 2. The pointer will point to the same `ReportData<C>` for the entire
368    ///    lifetime of this object.
369    ptr: NonNull<ReportData<Erased>>,
370
371    /// Marker to tell the compiler that we should
372    /// behave the same as a `&'a mut ReportData<Erased>`
373    _marker: core::marker::PhantomData<&'a mut ReportData<Erased>>,
374}
375
376impl<'a> RawReportMut<'a> {
377    /// Casts the [`RawReportMut`] to a mutable [`ReportData<C>`] reference.
378    ///
379    /// # Safety
380    ///
381    /// The caller must ensure:
382    ///
383    /// 1. The type `C` matches the actual context type stored in the
384    ///    [`ReportData`]
385    #[inline]
386    pub(super) unsafe fn cast_inner<C>(self) -> &'a mut ReportData<C> {
387        // Debug assertion to catch type mismatches in case of bugs
388        debug_assert_eq!(self.as_ref().vtable().type_id(), TypeId::of::<C>());
389
390        let mut this = self.ptr.cast::<ReportData<C>>();
391
392        // SAFETY: Converting the NonNull pointer to a mutable reference is sound
393        // because:
394        // - The pointer is non-null, properly aligned, and dereferenceable (guaranteed
395        //   by RawReportMut's type invariants)
396        // - The pointee is properly initialized (RawReportMut's doc comment guarantees
397        //   it points to an initialized ReportData<C> for some C)
398        // - The type `C` matches the actual context type (guaranteed by caller)
399        // - Exclusive access is guaranteed
400        // - The reference lifetime 'a is valid (tied to RawReportMut<'a>'s lifetime)
401        unsafe { this.as_mut() }
402    }
403
404    /// Reborrows the mutable reference to the [`ReportData`] with a shorter
405    /// lifetime.
406    #[inline]
407    pub fn reborrow<'b>(&'b mut self) -> RawReportMut<'b> {
408        RawReportMut {
409            ptr: self.ptr,
410            _marker: core::marker::PhantomData,
411        }
412    }
413
414    /// Returns a reference to the [`ReportData`] instance.
415    #[inline]
416    pub fn as_ref(&self) -> RawReportRef<'_> {
417        RawReportRef {
418            ptr: self.ptr,
419            _marker: core::marker::PhantomData,
420        }
421    }
422
423    /// Consumes the mutable reference and returns an immutable one with the
424    /// same lifetime.
425    #[inline]
426    pub fn into_ref(self) -> RawReportRef<'a> {
427        RawReportRef {
428            ptr: self.ptr,
429            _marker: core::marker::PhantomData,
430        }
431    }
432
433    /// Consumes this [`RawReportMut`] and returns a raw mutable pointer to the
434    /// underlying [`ReportData`].
435    ///
436    /// This method is primarily used for internal operations that require
437    /// direct pointer access.
438    #[inline]
439    pub(super) fn into_mut_ptr(self) -> *mut ReportData<Erased> {
440        self.ptr.as_ptr()
441    }
442}
443
444#[cfg(test)]
445mod tests {
446    use alloc::{string::String, vec};
447    use core::{error::Error, fmt};
448
449    use super::*;
450    use crate::handlers::ContextHandler;
451
452    struct HandlerI32;
453    impl ContextHandler<i32> for HandlerI32 {
454        fn source(_value: &i32) -> Option<&(dyn Error + 'static)> {
455            None
456        }
457
458        fn display(value: &i32, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
459            fmt::Display::fmt(value, formatter)
460        }
461
462        fn debug(value: &i32, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
463            fmt::Debug::fmt(value, formatter)
464        }
465    }
466
467    struct HandlerString;
468    impl ContextHandler<String> for HandlerString {
469        fn source(_value: &String) -> Option<&(dyn Error + 'static)> {
470            None
471        }
472
473        fn display(value: &String, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
474            fmt::Display::fmt(value, formatter)
475        }
476
477        fn debug(value: &String, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
478            fmt::Debug::fmt(value, formatter)
479        }
480    }
481
482    #[test]
483    fn test_raw_report_size() {
484        assert_eq!(
485            core::mem::size_of::<RawReport>(),
486            core::mem::size_of::<usize>()
487        );
488        assert_eq!(
489            core::mem::size_of::<Option<RawReport>>(),
490            core::mem::size_of::<usize>()
491        );
492        assert_eq!(
493            core::mem::size_of::<Result<(), RawReport>>(),
494            core::mem::size_of::<usize>()
495        );
496        assert_eq!(
497            core::mem::size_of::<Result<String, RawReport>>(),
498            core::mem::size_of::<String>()
499        );
500        assert_eq!(
501            core::mem::size_of::<Option<Option<RawReport>>>(),
502            core::mem::size_of::<Option<usize>>()
503        );
504
505        assert_eq!(
506            core::mem::size_of::<RawReportRef<'_>>(),
507            core::mem::size_of::<usize>()
508        );
509        assert_eq!(
510            core::mem::size_of::<Option<RawReportRef<'_>>>(),
511            core::mem::size_of::<usize>()
512        );
513        assert_eq!(
514            core::mem::size_of::<Result<(), RawReportRef<'_>>>(),
515            core::mem::size_of::<usize>()
516        );
517        assert_eq!(
518            core::mem::size_of::<Result<String, RawReportRef<'_>>>(),
519            core::mem::size_of::<String>()
520        );
521        assert_eq!(
522            core::mem::size_of::<Option<Option<RawReportRef<'_>>>>(),
523            core::mem::size_of::<Option<usize>>()
524        );
525
526        assert_eq!(
527            core::mem::size_of::<RawReportMut<'_>>(),
528            core::mem::size_of::<usize>()
529        );
530        assert_eq!(
531            core::mem::size_of::<Option<RawReportMut<'_>>>(),
532            core::mem::size_of::<usize>()
533        );
534        assert_eq!(
535            core::mem::size_of::<Result<(), RawReportMut<'_>>>(),
536            core::mem::size_of::<usize>()
537        );
538        assert_eq!(
539            core::mem::size_of::<Result<String, RawReportMut<'_>>>(),
540            core::mem::size_of::<String>()
541        );
542        assert_eq!(
543            core::mem::size_of::<Option<Option<RawReportMut<'_>>>>(),
544            core::mem::size_of::<Option<usize>>()
545        );
546    }
547
548    #[test]
549    fn test_raw_report_get_refs() {
550        let report = RawReport::new::<i32, HandlerI32>(789, vec![], vec![]);
551        let report_ref = report.as_ref();
552
553        // Accessing the pointer multiple times should be safe and consistent
554        let ptr1 = report_ref.as_ptr();
555        let ptr2 = report_ref.as_ptr();
556        assert_eq!(ptr1, ptr2);
557    }
558
559    #[test]
560    fn test_raw_report_clone_arc() {
561        // Test that Arc cloning maintains safety
562        let report = RawReport::new::<i32, HandlerI32>(123, vec![], vec![]);
563        let report_ref = report.as_ref();
564
565        assert_eq!(report_ref.strong_count(), 1);
566
567        // Original should have valid data
568        assert_eq!(report_ref.context_type_id(), TypeId::of::<i32>());
569
570        // Clone should work and maintain same type
571        // SAFETY: There are no assumptions on single ownership
572        let cloned = unsafe { report_ref.clone_arc() };
573        let cloned_ref = cloned.as_ref();
574
575        assert_eq!(report_ref.strong_count(), 2);
576        assert_eq!(cloned_ref.strong_count(), 2);
577
578        // Both should have same type and vtable
579        assert_eq!(report_ref.context_type_id(), cloned_ref.context_type_id());
580        assert!(core::ptr::eq(report_ref.vtable(), cloned_ref.vtable()));
581
582        core::mem::drop(cloned);
583
584        // After dropping the strong count should go back down
585        assert_eq!(report_ref.strong_count(), 1);
586    }
587
588    #[test]
589    fn test_raw_attachment_downcast() {
590        let int_report = RawReport::new::<i32, HandlerI32>(42, vec![], vec![]);
591        let string_report =
592            RawReport::new::<String, HandlerString>(String::from("test"), vec![], vec![]);
593
594        let int_ref = int_report.as_ref();
595        let string_ref = string_report.as_ref();
596
597        // Are TypeIds what we expect?
598        assert_eq!(int_ref.context_type_id(), TypeId::of::<i32>());
599        assert_eq!(string_ref.context_type_id(), TypeId::of::<String>());
600
601        // The vtables should be different
602        assert!(!core::ptr::eq(int_ref.vtable(), string_ref.vtable()));
603
604        // Correct downcasting should work
605        assert_eq!(unsafe { int_ref.context_downcast_unchecked::<i32>() }, &42);
606        assert_eq!(
607            unsafe { string_ref.context_downcast_unchecked::<String>() },
608            "test"
609        );
610    }
611
612    #[test]
613    fn test_raw_report_children() {
614        let child = RawReport::new::<i32, HandlerI32>(1, vec![], vec![]);
615        let parent = RawReport::new::<i32, HandlerI32>(0, vec![child], vec![]);
616
617        let parent_ref = parent.as_ref();
618        assert_eq!(parent_ref.context_type_id(), TypeId::of::<i32>());
619        assert_eq!(
620            unsafe { parent_ref.context_downcast_unchecked::<i32>() },
621            &0
622        );
623
624        // Parent should have one child
625        let children = parent_ref.children();
626        assert_eq!(children.len(), 1);
627
628        // Child should be accessible safely
629        let child_ref = children[0].as_ref();
630        assert_eq!(child_ref.context_type_id(), TypeId::of::<i32>());
631        assert_eq!(child_ref.children().len(), 0);
632        assert_eq!(unsafe { child_ref.context_downcast_unchecked::<i32>() }, &1);
633
634        // Both should have same vtable (same type)
635        assert!(core::ptr::eq(parent_ref.vtable(), child_ref.vtable()));
636    }
637
638    #[test]
639    fn test_raw_report_with_attachments() {
640        use crate::{attachment::RawAttachment, handlers::AttachmentHandler};
641
642        // Create a simple attachment handler for i32
643        struct AttachmentHandlerI32;
644        impl AttachmentHandler<i32> for AttachmentHandlerI32 {
645            fn display(value: &i32, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
646                fmt::Display::fmt(value, formatter)
647            }
648
649            fn debug(value: &i32, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
650                fmt::Debug::fmt(value, formatter)
651            }
652        }
653
654        // Create some attachments
655        let attachment1 = RawAttachment::new::<i32, AttachmentHandlerI32>(100);
656        let attachment2 = RawAttachment::new::<i32, AttachmentHandlerI32>(200);
657
658        // Create a child report with one attachment
659        let child = RawReport::new::<i32, HandlerI32>(1, vec![], vec![attachment1]);
660
661        // Create a parent report with the child and another attachment
662        let parent = RawReport::new::<i32, HandlerI32>(0, vec![child], vec![attachment2]);
663
664        let parent_ref = parent.as_ref();
665        assert_eq!(parent_ref.context_type_id(), TypeId::of::<i32>());
666        assert_eq!(
667            unsafe { parent_ref.context_downcast_unchecked::<i32>() },
668            &0
669        );
670
671        // Parent should have one child and one attachment
672        let children = parent_ref.children();
673        let attachments = parent_ref.attachments();
674        assert_eq!(children.len(), 1);
675        assert_eq!(attachments.len(), 1);
676
677        // Child should be accessible safely and have one attachment
678        let child_ref = children[0].as_ref();
679        assert_eq!(child_ref.context_type_id(), TypeId::of::<i32>());
680        assert_eq!(unsafe { child_ref.context_downcast_unchecked::<i32>() }, &1);
681        assert_eq!(child_ref.children().len(), 0);
682        assert_eq!(child_ref.attachments().len(), 1);
683
684        // Check attachment downcasting works
685        let parent_attachment_ref = attachments[0].as_ref();
686        let child_attachment_ref = child_ref.attachments()[0].as_ref();
687
688        assert_eq!(
689            parent_attachment_ref.attachment_type_id(),
690            TypeId::of::<i32>()
691        );
692        assert_eq!(
693            child_attachment_ref.attachment_type_id(),
694            TypeId::of::<i32>()
695        );
696
697        // Downcast attachments and verify values
698        assert_eq!(
699            unsafe { *parent_attachment_ref.attachment_downcast_unchecked::<i32>() },
700            200
701        );
702        assert_eq!(
703            unsafe { *child_attachment_ref.attachment_downcast_unchecked::<i32>() },
704            100
705        );
706
707        // Both reports should have same vtable (same context type)
708        assert!(core::ptr::eq(parent_ref.vtable(), child_ref.vtable()));
709    }
710
711    #[test]
712    fn test_raw_report_mut_basic() {
713        let mut report = RawReport::new::<i32, HandlerI32>(789, vec![], vec![]);
714
715        // SAFETY: We have unique ownership of the report
716        let mut report_mut = unsafe { report.as_mut() };
717
718        // Test that we can get a reference from the mutable reference
719        let report_ref = report_mut.as_ref();
720        assert_eq!(report_ref.context_type_id(), TypeId::of::<i32>());
721        assert_eq!(
722            unsafe { report_ref.context_downcast_unchecked::<i32>() },
723            &789
724        );
725
726        // Test reborrow functionality
727        let reborrowed = report_mut.reborrow();
728        let ref_from_reborrow = reborrowed.as_ref();
729        assert_eq!(ref_from_reborrow.context_type_id(), TypeId::of::<i32>());
730        assert_eq!(
731            unsafe { ref_from_reborrow.context_downcast_unchecked::<i32>() },
732            &789
733        );
734
735        // Test into_mut_ptr
736        let ptr = report_mut.into_mut_ptr();
737        assert!(!ptr.is_null());
738    }
739
740    #[test]
741    fn test_raw_report_mut_reborrow_lifetime() {
742        let mut report =
743            RawReport::new::<String, HandlerString>(String::from("test"), vec![], vec![]);
744
745        // SAFETY: We have unique ownership of the report
746        let mut report_mut = unsafe { report.as_mut() };
747
748        // Test that reborrow works with different lifetimes
749        {
750            let short_reborrow = report_mut.reborrow();
751            let ref_from_short = short_reborrow.as_ref();
752            assert_eq!(ref_from_short.context_type_id(), TypeId::of::<String>());
753            assert_eq!(
754                unsafe { ref_from_short.context_downcast_unchecked::<String>() },
755                "test"
756            );
757        }
758
759        // Original mutable reference should still be usable
760        let final_ref = report_mut.as_ref();
761        assert_eq!(final_ref.context_type_id(), TypeId::of::<String>());
762        assert_eq!(
763            unsafe { final_ref.context_downcast_unchecked::<String>() },
764            "test"
765        );
766    }
767
768    #[test]
769    fn test_raw_report_mut_with_children() {
770        let child = RawReport::new::<i32, HandlerI32>(1, vec![], vec![]);
771        let mut parent = RawReport::new::<i32, HandlerI32>(0, vec![child], vec![]);
772
773        // SAFETY: We have unique ownership of the parent report
774        let mut parent_mut = unsafe { parent.as_mut() };
775
776        let parent_ref = parent_mut.as_ref();
777        assert_eq!(parent_ref.context_type_id(), TypeId::of::<i32>());
778        assert_eq!(
779            unsafe { parent_ref.context_downcast_unchecked::<i32>() },
780            &0
781        );
782
783        // Check that children are still accessible through the reference
784        let children = parent_ref.children();
785        assert_eq!(children.len(), 1);
786
787        let child_ref = children[0].as_ref();
788        assert_eq!(child_ref.context_type_id(), TypeId::of::<i32>());
789        assert_eq!(unsafe { child_ref.context_downcast_unchecked::<i32>() }, &1);
790
791        // Test reborrow with children
792        let reborrowed = parent_mut.reborrow();
793        let reborrow_ref = reborrowed.as_ref();
794        let reborrow_children = reborrow_ref.children();
795        assert_eq!(reborrow_children.len(), 1);
796        assert_eq!(
797            reborrow_children[0].as_ref().context_type_id(),
798            TypeId::of::<i32>()
799        );
800        assert_eq!(
801            unsafe {
802                reborrow_children[0]
803                    .as_ref()
804                    .context_downcast_unchecked::<i32>()
805            },
806            &1
807        );
808    }
809
810    #[test]
811    fn test_raw_report_mut_ptr_consistency() {
812        let mut report = RawReport::new::<i32, HandlerI32>(42, vec![], vec![]);
813
814        // Get immutable reference pointer first
815        let immut_ref = report.as_ref();
816        let immut_ptr = immut_ref.as_ptr();
817        // SAFETY: We have unique ownership of the report
818        let report_mut = unsafe { report.as_mut() };
819
820        // Get mutable pointer
821        let mut_ptr = report_mut.into_mut_ptr();
822
823        // Both pointers should point to the same location
824        assert_eq!(immut_ptr, mut_ptr as *const _);
825    }
826    #[test]
827    fn test_send_sync() {
828        static_assertions::assert_not_impl_any!(RawReport: Send, Sync);
829        static_assertions::assert_not_impl_any!(RawReportRef<'_>: Send, Sync);
830        static_assertions::assert_not_impl_any!(RawReportMut<'_>: Send, Sync);
831    }
832}