Skip to main content

Crate robin_sparkless

Crate robin_sparkless 

Source
Expand description

Robin Sparkless - A Rust DataFrame library with PySpark-like API

This library provides a PySpark-compatible API built on top of Polars, offering high-performance data processing in pure Rust.

§Panics and errors

Some functions panic when used with invalid or empty inputs (e.g. calling when(cond).otherwise(val) without .then(), or passing no columns to format_string, elt, concat, coalesce, or named_struct in Rust). In Rust, create_map and array return Result for empty input instead of panicking. From Python, empty columns for coalesce, format_string, printf, and named_struct raise ValueError. See the documentation for each function for details.

§API stability

While the crate is in the 0.x series, we follow semver but may introduce breaking changes in minor releases (e.g. 0.1 → 0.2) until 1.0. For behavioral caveats and intentional differences from PySpark, see the repository documentation.

Re-exports§

pub use column::Column;
pub use dataframe::CubeRollupData;
pub use dataframe::DataFrame;
pub use dataframe::GroupedData;
pub use dataframe::JoinType;
pub use dataframe::SaveMode;
pub use dataframe::WriteFormat;
pub use dataframe::WriteMode;
pub use functions::SortOrder;
pub use schema::StructField;
pub use schema::StructType;
pub use session::DataFrameReader;
pub use session::SparkSession;
pub use session::SparkSessionBuilder;
pub use functions::*;

Modules§

column
dataframe
DataFrame module: main tabular type and submodules for transformations, aggregations, joins, stats.
expression
functions
plan
Plan interpreter: execute a serialized logical plan (list of ops) using the existing DataFrame API.
schema
session
type_coercion