roan_ast/ast/
expr.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
use crate::{statements::Stmt, GetSpan, Token, TokenKind};
use indexmap::IndexMap;
use roan_error::TextSpan;
use std::fmt::{Display, Formatter};

/// Represents a collection of expressions as a vector.
/// Used to handle lists of expressions, such as arrays or argument lists.
#[derive(Clone, Debug, PartialEq)]
pub struct VecExpr {
    /// The vector containing the expressions.
    pub exprs: Vec<Expr>,
}

/// Enum that defines the possible literal types in the language.
/// Literals are constant values such as numbers, strings, and booleans.
#[derive(Clone, Debug, PartialEq)]
pub enum LiteralType {
    /// An integer literal (e.g., `42`).
    Int(i64),
    /// A floating-point literal (e.g., `3.14`).
    Float(f64),
    /// A string literal (e.g., `"hello"`).
    String(String),
    /// A boolean literal (`true` or `false`).
    Bool(bool),
    /// A character literal (e.g., `'a'`).
    Char(char),
    /// A `null` literal representing the absence of a value.
    Null,
}

/// Represents a literal expression in the AST.
/// It consists of a token and a specific literal value (e.g., integer, string).
#[derive(Clone, Debug, PartialEq)]
pub struct Literal {
    /// The token representing the literal in the source code.
    pub token: Token,
    /// The value of the literal.
    pub value: LiteralType,
}

impl Literal {
    pub fn new(token: Token, value: LiteralType) -> Self {
        Literal { token, value }
    }
}

/// Enum representing the various binary operators in the language.
/// Binary operators are used in binary expressions (e.g., `a + b`).
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum BinOpKind {
    // Arithmetic operators
    /// Addition operator (`+`).
    Plus,
    /// Subtraction operator (`-`).
    Minus,
    /// Multiplication operator (`*`).
    Multiply,
    /// Division operator (`/`).
    Divide,
    /// Exponentiation operator (`**`).
    Power,
    /// Modulo operator (`%`).
    Modulo,
    // Bitwise operators
    /// Bitwise AND operator (`&`).
    BitwiseAnd,
    /// Bitwise OR operator (`|`).
    BitwiseOr,
    /// Bitwise XOR operator (`^`).
    BitwiseXor,
    /// Bitwise shift left operator (`<<`).
    ShiftLeft,
    /// Bitwise shift right operator (`>>`).
    ShiftRight,
    // Relational operators
    /// Equality operator (`==`).
    Equals,
    /// Less-than operator (`<`).
    LessThan,
    /// Less-than-or-equal operator (`<=`).
    LessThanOrEqual,
    /// Greater-than operator (`>`).
    GreaterThan,
    /// Greater-than-or-equal operator (`>=`).
    GreaterThanOrEqual,
    // Logical operators
    /// Logical AND operator (`&&`).
    And,
    /// Logical OR operator (`||`).
    Or,
    // Equality operators (duplicated? Consider removing duplicates)
    /// Equality operator (`==`).
    EqualsEquals,
    /// Inequality operator (`!=`).
    BangEquals,
    // Increment/Decrement operators
    /// Increment operator (`++`).
    Increment,
    /// Decrement operator (`--`).
    Decrement,
    // Assignment operators
    /// Subtraction assignment operator (`-=`).
    MinusEquals,
    /// Addition assignment operator (`+=`).
    PlusEquals,
}

/// Represents a binary expression in the AST.
/// A binary expression consists of two operands and an operator (e.g., `a + b`).
#[derive(Debug, Clone, PartialEq)]
pub struct Binary {
    /// The left operand of the binary expression.
    pub left: Box<Expr>,
    /// The operator used in the binary expression.
    pub operator: BinOpKind,
    /// The right operand of the binary expression.
    pub right: Box<Expr>,
}

impl GetSpan for Binary {
    /// Returns the combined source span of the left and right operands.
    fn span(&self) -> TextSpan {
        let left = self.left.span();
        let right = self.right.span();

        TextSpan::combine(vec![left, right]).unwrap()
    }
}

/// Represents a unary expression in the AST.
/// Unary expressions operate on a single operand (e.g., `-a`).
#[derive(Debug, Clone, PartialEq)]
pub struct Unary {
    /// The operator used in the unary expression.
    pub operator: UnOperator,
    /// The operand of the unary expression.
    pub expr: Box<Expr>,
    /// The token representing the unary operation in the source code.
    pub token: Token,
}

impl GetSpan for Unary {
    /// Returns the source span of the unary expression.
    fn span(&self) -> TextSpan {
        TextSpan::combine(vec![self.operator.token.span.clone(), self.expr.span()]).unwrap()
    }
}

/// Represents a variable in the AST.
/// A variable refers to a named entity in the program.
#[derive(Debug, Clone, PartialEq)]
pub struct Variable {
    /// The name of the variable.
    pub ident: String,
    /// The token representing the variable in the source code.
    pub token: Token,
}

/// Represents a parenthesized expression in the AST.
/// Parenthesized expressions are used to override operator precedence.
#[derive(Debug, Clone, PartialEq)]
pub struct Parenthesized {
    /// The expression contained within the parentheses.
    pub expr: Box<Expr>,
}

/// Represents a function call in the AST.
/// It consists of a function name (callee) and a list of arguments.
#[derive(Debug, Clone, PartialEq)]
pub struct CallExpr {
    /// The name of the function being called.
    pub callee: String,
    /// The list of arguments passed to the function.
    pub args: Vec<Expr>,
    /// The token representing the function call in the source code.
    pub token: Token,
}

impl GetSpan for CallExpr {
    /// Returns the source span of the function call expression.
    fn span(&self) -> TextSpan {
        // TODO: get the span of the closing parenthesis
        let callee_span = self.token.span.clone();
        let args_span: Vec<TextSpan> = self.args.iter().map(|arg| arg.span()).collect();
        let args_span = TextSpan::combine(args_span);

        let mut spans = vec![callee_span];

        if args_span.is_some() {
            spans.push(args_span.unwrap());
        }

        TextSpan::combine(spans).unwrap()
    }
}

#[derive(Debug, Clone, PartialEq)]
pub enum AssignOperator {
    /// Assignment operator (`=`).
    Assign,
    /// Addition assignment operator (`+=`).
    PlusEquals,
    /// Subtraction assignment operator (`-=`).
    MinusEquals,
    /// Multiplication assignment operator (`*=`).
    MultiplyEquals,
    /// Division assignment operator (`/=`).
    DivideEquals,
}

impl AssignOperator {
    pub fn from_token_kind(kind: TokenKind) -> Self {
        match kind {
            TokenKind::Equals => AssignOperator::Assign,
            TokenKind::PlusEquals => AssignOperator::PlusEquals,
            TokenKind::MinusEquals => AssignOperator::MinusEquals,
            TokenKind::MultiplyEquals => AssignOperator::MultiplyEquals,
            TokenKind::DivideEquals => AssignOperator::DivideEquals,
            _ => todo!("Proper error"),
        }
    }
}

/// Represents an assignment expression in the AST.
/// An assignment binds a value to a variable.
#[derive(Debug, Clone, PartialEq)]
pub struct Assign {
    /// The variable being assigned to.
    pub left: Box<Expr>,
    /// The assignment operator.
    pub op: AssignOperator,
    /// The value being assigned.
    pub right: Box<Expr>,
}

/// Enum representing unary operator kinds (e.g., `-`, `~`).
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum UnOpKind {
    /// Minus operator (`-`).
    Minus,
    /// Bitwise NOT operator (`~`).
    BitwiseNot,
    /// Logical NOT operator (`!`).
    LogicalNot,
}

impl Display for UnOpKind {
    /// Formats the unary operator as a string.
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        match self {
            UnOpKind::Minus => write!(f, "-"),
            UnOpKind::BitwiseNot => write!(f, "~"),
            UnOpKind::LogicalNot => write!(f, "!"),
        }
    }
}

/// Represents a unary operator in the AST.
#[derive(Debug, Clone, PartialEq)]
pub struct UnOperator {
    /// The specific kind of unary operator.
    pub kind: UnOpKind,
    /// The token representing the unary operator in the source code.
    pub token: Token,
}

impl UnOperator {
    /// Creates a new unary operator.
    ///
    /// # Arguments
    ///
    /// * `kind` - The kind of unary operator.
    /// * `token` - The token representing the operator in the source code.
    ///
    /// # Returns
    ///
    /// A new `UnOperator` instance.
    pub fn new(kind: UnOpKind, token: Token) -> Self {
        UnOperator { kind, token }
    }
}

/// Represents a binary operator in the AST.
#[derive(Debug, Clone)]
pub struct BinOperator {
    /// The specific kind of binary operator.
    pub kind: BinOpKind,
    /// The token representing the binary operator in the source code.
    pub token: Token,
}

impl BinOperator {
    /// Creates a new binary operator.
    ///
    /// # Arguments
    ///
    /// * `kind` - The kind of binary operator.
    /// * `token` - The token representing the operator in the source code.
    ///
    /// # Returns
    ///
    /// A new `BinOperator` instance.
    pub fn new(kind: BinOpKind, token: Token) -> Self {
        BinOperator { kind, token }
    }

    /// Returns the precedence of the operator.
    ///
    /// Higher numbers indicate higher precedence.
    ///
    /// # Returns
    ///
    /// An unsigned 8-bit integer representing the operator's precedence.
    pub fn precedence(&self) -> u8 {
        match self.kind {
            // Highest precedence
            BinOpKind::Power => 20,
            BinOpKind::Multiply | BinOpKind::Divide | BinOpKind::Modulo => 19,
            BinOpKind::Plus | BinOpKind::Minus => 18,
            BinOpKind::ShiftLeft | BinOpKind::ShiftRight => 17,
            BinOpKind::BitwiseAnd => 16,
            BinOpKind::BitwiseXor => 15,
            BinOpKind::BitwiseOr => 14,
            // Relational operators
            BinOpKind::LessThan
            | BinOpKind::LessThanOrEqual
            | BinOpKind::GreaterThan
            | BinOpKind::GreaterThanOrEqual => 13,
            // Equality operators
            BinOpKind::Equals | BinOpKind::EqualsEquals | BinOpKind::BangEquals => 12,
            // Logical operators
            BinOpKind::And => 11,
            BinOpKind::Or => 10,
            // Increment/Decrement operators
            BinOpKind::Increment | BinOpKind::Decrement => 9,
            // Assignment operators
            BinOpKind::MinusEquals | BinOpKind::PlusEquals => 8,
        }
    }

    /// Returns the associativity of the operator.
    ///
    /// Operators can be either left-associative or right-associative.
    ///
    /// # Returns
    ///
    /// A `BinOpAssociativity` enum indicating the associativity.
    pub fn associativity(&self) -> BinOpAssociativity {
        match self.kind {
            BinOpKind::Power => BinOpAssociativity::Right,
            _ => BinOpAssociativity::Left,
        }
    }
}

/// Enum representing the associativity of a binary operator.
#[derive(Debug, Clone, PartialEq)]
pub enum BinOpAssociativity {
    /// Left-associative operators group from the left.
    Left,
    /// Right-associative operators group from the right.
    Right,
}

/// Spread operator for variadic arguments.
///
/// The spread operator is used to pass an array as separate arguments to a function.
#[derive(Debug, Clone, PartialEq)]
pub struct Spread {
    pub token: Token,
    pub expr: Box<Expr>,
}

/// Enum representing an expression in the AST.
/// Expressions include literals, binary operations, unary operations, and more.
#[derive(Clone, Debug, PartialEq)]
pub enum Expr {
    /// A literal value (e.g., number, string).
    Literal(Literal),
    /// A binary operation (e.g., `a + b`).
    Binary(Binary),
    /// A unary operation (e.g., `-a`).
    Unary(Unary),
    /// A variable reference.
    Variable(Variable),
    /// A parenthesized expression to override precedence.
    Parenthesized(Parenthesized),
    /// A function call expression.
    Call(CallExpr),
    /// An assignment expression (e.g., `a = b`).
    Assign(Assign),
    /// A vector (list) of expressions.
    Vec(VecExpr),
    /// An access expression (e.g., `struct.name`, `arr[0]`, `Person::new`).
    Access(AccessExpr),
    /// A spread operator for variadic arguments. (e.g., `...args`)
    Spread(Spread),
    /// Null literal.
    Null(Token),
    /// Struct constructor. (e.g., `MyStruct { field: value }`)
    StructConstructor(StructConstructor),
    /// Then-else expression. (e.g., `if condition then value else other`)
    ThenElse(ThenElse),
    /// Object expression.
    Object(ObjectExpr),
}

/// Represents an object expression in the AST.
///
/// An object expression is a collection of key-value pairs.
#[derive(Debug, Clone, PartialEq)]
pub struct ObjectExpr {
    /// The key-value pairs in the object.
    pub fields: IndexMap<String, Expr>,
    /// The token representing opening and closing braces.
    pub braces: (Token, Token),
}

/// Represents a then-else expression in the AST.
///
/// A then-else expression is used to conditionally evaluate one of two expressions.
///
/// # Examples
/// ```roan
/// let value = if condition then 42 else 0
/// ```
#[derive(Debug, Clone, PartialEq)]
pub struct ThenElse {
    /// The condition expression.
    pub condition: Box<Expr>,
    /// The expression to evaluate if the condition is true.
    pub then_expr: Box<Expr>,
    /// The expression to evaluate if the condition is false.
    pub else_expr: Box<Expr>,
    /// The token representing the `then` keyword.
    pub then_token: Token,
    /// The token representing the `else` keyword.
    pub else_token: Token,
}

impl GetSpan for ThenElse {
    /// Returns the combined source span of the condition, then expression, and else expression.
    fn span(&self) -> TextSpan {
        let condition_span = self.condition.span();
        let then_span = self.then_expr.span();
        let else_span = self.else_expr.span();

        TextSpan::combine(vec![condition_span, then_span, else_span]).unwrap()
    }
}

/// Represents a struct constructor expression in the AST.
///
/// A struct constructor creates a new instance of a struct with the specified field values.
#[derive(Debug, Clone, PartialEq)]
pub struct StructConstructor {
    /// The name of the struct being constructed.
    pub name: String,
    /// The field values for the struct.
    pub fields: Vec<(String, Expr)>,
    /// The token representing the struct constructor in the source code.
    pub token: Token,
}

/// Enum representing the kind of access in an access expression.
#[derive(Debug, Clone, PartialEq)]
pub enum AccessKind {
    /// Field access (e.g., `.name`).
    Field(Box<Expr>),
    /// Index access (e.g., `[0]`).
    Index(Box<Expr>),
    /// Static method access (e.g., `Person::new`).
    StaticMethod(Box<Expr>),
}

/// Represents an access expression in the AST.
/// It includes accessing a field or indexing into a collection.
#[derive(Debug, Clone, PartialEq)]
pub struct AccessExpr {
    /// The base expression being accessed.
    pub base: Box<Expr>,
    /// The kind of access (field or index).
    pub access: AccessKind,
    /// The token representing the access operation (e.g., `.`, `[`, `]`).
    pub token: Token,
}

impl GetSpan for AccessExpr {
    /// Returns the combined source span of the base expression and the access operation.
    fn span(&self) -> TextSpan {
        let base_span = self.base.span();
        let access_span = match &self.access {
            AccessKind::Field(_) => self.token.span.clone(), // Span includes the '.' and the field name
            AccessKind::Index(index_expr) => {
                TextSpan::combine(vec![self.token.span.clone(), index_expr.span()]).unwrap()
            } // Span includes '[' , index, and ']'
            AccessKind::StaticMethod(method) => {
                TextSpan::combine(vec![self.token.span.clone(), method.span()]).unwrap()
            }
        };
        TextSpan::combine(vec![base_span, access_span]).unwrap()
    }
}

impl GetSpan for Expr {
    /// Returns the `TextSpan` associated with the expression in the source code.
    fn span(&self) -> TextSpan {
        match &self {
            Expr::Literal(l) => l.clone().token.span,
            Expr::Binary(b) => {
                let left = b.left.span();
                let right = b.right.span();
                TextSpan::combine(vec![left, right]).unwrap()
            }
            Expr::Unary(u) => u.clone().token.span,
            Expr::Variable(v) => v.clone().token.span,
            Expr::Parenthesized(p) => p.expr.span(),
            Expr::Call(c) => c.clone().token.span,
            Expr::Assign(a) => {
                let left = a.left.span();
                let right = a.right.span();
                TextSpan::combine(vec![left, right]).unwrap()
            }
            Expr::Vec(v) => {
                let spans: Vec<TextSpan> = v.exprs.iter().map(|e| e.span()).collect();
                TextSpan::combine(spans).unwrap()
            }
            Expr::Access(a) => a.span(),
            Expr::Spread(s) => {
                TextSpan::combine(vec![s.token.span.clone(), s.expr.span()]).unwrap()
            }
            Expr::Null(t) => t.span.clone(),
            Expr::StructConstructor(s) => s.token.span.clone(),
            Expr::ThenElse(t) => t.span(),
            Expr::Object(o) => {
                TextSpan::combine(vec![o.braces.0.span.clone(), o.braces.1.span.clone()]).unwrap()
            }
        }
    }
}

impl Expr {
    /// Converts the expression into a statement.
    ///
    /// # Returns
    ///
    /// A `Stmt::Expr` variant containing the expression.
    pub fn into_stmt(self) -> Stmt {
        Stmt::Expr(Box::new(self))
    }

    /// Converts the expression into a variable.
    ///
    /// # Panics
    ///
    /// Panics if the expression is not a `Variable` variant.
    ///
    /// # Returns
    ///
    /// The `Variable` struct contained within the expression.
    pub fn into_variable(self) -> Variable {
        match self {
            Expr::Variable(v) => v,
            _ => panic!("Expected variable"),
        }
    }

    /// Creates a new null literal expression.
    pub fn new_null(token: Token) -> Self {
        Expr::Null(token)
    }

    /// Creates a new field access expression.
    ///
    /// # Arguments
    ///
    /// * `base` - The base expression being accessed.
    /// * `field` - The name of the field to access.
    /// * `token` - The token representing the '.' operator.
    ///
    /// # Returns
    ///
    /// A new `Expr::Access` variant with `AccessKind::Field`.
    pub fn new_field_access(base: Expr, field: Expr, token: Token) -> Self {
        Expr::Access(AccessExpr {
            base: Box::new(base),
            access: AccessKind::Field(Box::new(field)),
            token,
        })
    }

    /// Create a new spread expression.
    ///
    /// # Arguments
    /// * `token` - The token representing the spread operator.
    /// * `expr` - The expression to spread.
    ///
    /// # Returns
    /// A new `Expr::Spread` variant.
    pub fn new_spread(token: Token, expr: Expr) -> Self {
        Expr::Spread(Spread {
            token,
            expr: Box::new(expr),
        })
    }

    /// Creates a new index access expression.
    ///
    /// # Arguments
    ///
    /// * `base` - The base expression being accessed.
    /// * `index` - The index expression.
    /// * `token` - The token representing the '[' and ']' operators.
    ///
    /// # Returns
    ///
    /// A new `Expr::Access` variant with `AccessKind::Index`.
    pub fn new_index_access(base: Expr, index: Expr, token: Token) -> Self {
        // **Added**
        Expr::Access(AccessExpr {
            base: Box::new(base),
            access: AccessKind::Index(Box::new(index)),
            token,
        })
    }

    /// Creates a new then-else expression.
    ///
    /// # Arguments
    /// * `condition` - The condition expression.
    /// * `then_expr` - The expression to evaluate if the condition is true.
    /// * `else_expr` - The expression to evaluate if the condition is false.
    /// * `then_token` - The token representing the `then` keyword.
    /// * `else_token` - The token representing the `else` keyword.
    ///
    /// # Returns
    ///
    /// A new `Expr::ThenElse` variant.
    pub fn new_then_else(
        condition: Expr,
        then_expr: Expr,
        else_expr: Expr,
        then_token: Token,
        else_token: Token,
    ) -> Self {
        Expr::ThenElse(ThenElse {
            condition: Box::new(condition),
            then_expr: Box::new(then_expr),
            else_expr: Box::new(else_expr),
            then_token,
            else_token,
        })
    }

    /// Creates a new unary expression.
    ///
    /// # Arguments
    ///
    /// * `operator` - The unary operator.
    /// * `expr` - The operand expression.
    /// * `token` - The token representing the unary operation.
    ///
    /// # Returns
    ///
    /// A new `Expr::Unary` variant.
    pub fn new_unary(operator: UnOperator, expr: Expr, token: Token) -> Self {
        Expr::Unary(Unary {
            operator,
            expr: Box::new(expr),
            token,
        })
    }

    /// Creates a new assignment expression.
    ///
    /// # Arguments
    ///
    /// * `ident` - The token representing the variable identifier.
    /// * `token` - The token representing the assignment operation.
    /// * `value` - The expression to assign.
    ///
    /// # Returns
    ///
    /// A new `Expr::Assign` variant.
    pub fn new_assign(left: Expr, op: AssignOperator, right: Expr) -> Self {
        Expr::Assign(Assign {
            left: Box::new(left),
            op,
            right: Box::new(right),
        })
    }

    /// Creates a new binary expression.
    ///
    /// # Arguments
    ///
    /// * `left` - The left operand expression.
    /// * `operator` - The binary operator.
    /// * `right` - The right operand expression.
    ///
    /// # Returns
    ///
    /// A new `Expr::Binary` variant.
    pub fn new_binary(left: Expr, operator: BinOperator, right: Expr) -> Self {
        Expr::Binary(Binary {
            left: Box::new(left),
            operator: operator.kind,
            right: Box::new(right),
        })
    }

    /// Creates a new integer literal expression.
    ///
    /// # Arguments
    ///
    /// * `token` - The token representing the integer literal.
    /// * `value` - The integer value.
    ///
    /// # Returns
    ///
    /// A new `Expr::Literal` variant with `LiteralType::Int`.
    pub fn new_integer(token: Token, value: i64) -> Self {
        Expr::Literal(Literal {
            token,
            value: LiteralType::Int(value),
        })
    }

    /// Creates a new floating-point literal expression.
    ///
    /// # Arguments
    ///
    /// * `token` - The token representing the float literal.
    /// * `value` - The floating-point value.
    ///
    /// # Returns
    ///
    /// A new `Expr::Literal` variant with `LiteralType::Float`.
    pub fn new_float(token: Token, value: f64) -> Self {
        Expr::Literal(Literal {
            token,
            value: LiteralType::Float(value),
        })
    }

    /// Creates a new boolean literal expression.
    ///
    /// # Arguments
    ///
    /// * `token` - The token representing the boolean literal.
    /// * `value` - The boolean value.
    ///
    /// # Returns
    ///
    /// A new `Expr::Literal` variant with `LiteralType::Bool`.
    pub fn new_bool(token: Token, value: bool) -> Self {
        Expr::Literal(Literal {
            token,
            value: LiteralType::Bool(value),
        })
    }

    /// Creates a new variable expression.
    ///
    /// # Arguments
    ///
    /// * `ident` - The token representing the variable identifier.
    /// * `name` - The name of the variable.
    ///
    /// # Returns
    ///
    /// A new `Expr::Variable` variant.
    pub fn new_variable(ident: Token, name: String) -> Self {
        Expr::Variable(Variable {
            ident: name,
            token: ident,
        })
    }

    /// Creates a new function call expression.
    ///
    /// # Arguments
    ///
    /// * `callee` - The name of the function being called.
    /// * `args` - The list of argument expressions.
    /// * `token` - The token representing the function call.
    ///
    /// # Returns
    ///
    /// A new `Expr::Call` variant.
    pub fn new_call(callee: String, args: Vec<Expr>, token: Token) -> Self {
        Expr::Call(CallExpr {
            callee,
            args,
            token,
        })
    }

    /// Creates a new string literal expression.
    ///
    /// # Arguments
    ///
    /// * `token` - The token representing the string literal.
    /// * `value` - The string value.
    ///
    /// # Returns
    ///
    /// A new `Expr::Literal` variant with `LiteralType::String`.
    pub fn new_string(token: Token, value: String) -> Self {
        Expr::Literal(Literal {
            token,
            value: LiteralType::String(value),
        })
    }

    /// Creates a new character literal expression.
    ///
    /// # Arguments
    /// * `token` - The token representing the character literal.
    /// * `value` - The character value.
    ///
    /// # Returns
    ///
    /// A new `Expr::Literal` variant with `LiteralType::Char`.
    pub fn new_char(token: Token, value: char) -> Self {
        Expr::Literal(Literal {
            token,
            value: LiteralType::Char(value),
        })
    }

    /// Creates a new parenthesized expression.
    ///
    /// # Arguments
    ///
    /// * `expr` - The expression to be parenthesized.
    ///
    /// # Returns
    ///
    /// A new `Expr::Parenthesized` variant.
    pub fn new_parenthesized(expr: Expr) -> Self {
        Expr::Parenthesized(Parenthesized {
            expr: Box::new(expr),
        })
    }

    /// Creates a new vector expression.
    ///
    /// # Arguments
    ///
    /// * `exprs` - The list of expressions in the vector.
    ///
    /// # Returns
    ///
    /// A new `Expr::Vec` variant.
    pub fn new_vec(exprs: Vec<Expr>) -> Self {
        Expr::Vec(VecExpr { exprs })
    }

    /// Creates a new struct constructor expression.
    ///
    /// # Arguments
    /// * `name` - The name of the struct being constructed.
    /// * `fields` - The field values for the struct.
    /// * `token` - The token representing the struct constructor.
    ///
    /// # Returns
    ///
    /// A new `Expr::StructConstructor` variant.
    pub fn new_struct_constructor(name: String, fields: Vec<(String, Expr)>, token: Token) -> Self {
        Expr::StructConstructor(StructConstructor {
            name,
            fields,
            token,
        })
    }

    /// Creates a new static method access expression.
    ///
    /// # Arguments
    /// * `base` - The base expression being accessed.
    /// * `method` - The method expression.
    /// * `token` - The token representing the '::' operator.
    ///
    /// # Returns
    ///
    /// A new `Expr::Access` variant with `AccessKind::StaticMethod`.
    pub fn new_static_method_access(base: Expr, method: Expr, token: Token) -> Self {
        Expr::Access(AccessExpr {
            base: Box::new(base),
            access: AccessKind::StaticMethod(Box::new(method)),
            token,
        })
    }

    /// Creates a new object expression.
    ///
    /// # Arguments
    /// * `fields` - The key-value pairs in the object.
    /// * `braces` - The tokens representing the opening and closing braces.
    ///
    /// # Returns
    ///
    /// A new `Expr::Object` variant.
    pub fn new_object(fields: IndexMap<String, Expr>, braces: (Token, Token)) -> Self {
        Expr::Object(ObjectExpr { fields, braces })
    }
}