roan_ast/parser/statements.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
use crate::{
Block, ElseBlock, FnParam, FunctionType, ParseContext, Parser, Stmt, StructField, Token,
TokenKind, TypeAnnotation,
};
use anyhow::Result;
use colored::Colorize;
use roan_error::error::RoanError::{
ExpectedToken, InvalidType, MultipleRestParameters, MultipleSelfParameters,
RestParameterNotLastPosition, SelfParameterCannotBeRest, SelfParameterNotFirst,
};
use tracing::debug;
static VALID_TYPE_NAMES: [&str; 8] = [
"bool", "int", "float", "string", "void", "anytype", "char", "object",
];
impl Parser {
/// Parses a statement from the tokens.
///
/// This method checks the type of token to determine the kind of statement it should create.
/// It supports function declarations, variable assignments, control flow, and more.
///
/// # Returns
/// - `Ok(Some(Stmt))`: A parsed statement.
/// - `Ok(None)`: If the token is a comment or semicolon.
/// - `Err`: If there is a parsing error.
pub fn parse_stmt(&mut self) -> Result<Option<Stmt>> {
let token = self.peek();
let stmt = match token.kind {
TokenKind::Pub => {
if self.peek_next().kind == TokenKind::Fn {
Some(self.parse_fn()?)
} else if self.peek_next().kind == TokenKind::Struct {
Some(self.parse_struct()?)
} else if self.peek_next().kind == TokenKind::Trait {
Some(self.parse_trait()?)
} else if self.peek_next().kind == TokenKind::Const {
Some(self.parse_const()?)
} else {
// TODO: return error
None
}
}
TokenKind::Fn => Some(self.parse_fn()?),
TokenKind::Struct => Some(self.parse_struct()?),
TokenKind::Trait => Some(self.parse_trait()?),
TokenKind::Const => Some(self.parse_const()?),
TokenKind::Impl => {
let impl_keyword = self.consume();
if self.peek().kind == TokenKind::Identifier {
let ident = self.consume();
if self.peek().kind == TokenKind::For {
Some(self.parse_trait_impl(impl_keyword, ident)?)
} else if self.peek().kind == TokenKind::LeftBrace {
Some(self.parse_impl(impl_keyword, ident)?)
} else {
None
}
} else {
None
}
}
TokenKind::Use => Some(self.parse_use()?),
TokenKind::If => Some(self.parse_if()?),
TokenKind::Let => Some(self.parse_let()?),
TokenKind::Throw => Some(self.parse_throw()?),
TokenKind::Try => Some(self.parse_try()?),
TokenKind::Break => {
self.consume();
self.possible_check(TokenKind::Semicolon);
Some(Stmt::new_break(token))
}
TokenKind::Continue => {
self.consume();
self.possible_check(TokenKind::Semicolon);
Some(Stmt::new_continue(token))
}
TokenKind::Loop => {
self.consume();
let block = self.parse_block()?;
Some(Stmt::new_loop(token, block))
}
TokenKind::While => self.parse_while()?,
TokenKind::LeftBrace => {
self.consume();
let block = self.parse_block()?;
self.expect(TokenKind::RightBrace)?;
Some(Stmt::Block(block))
}
TokenKind::Return => self.parse_return()?,
TokenKind::Semicolon | TokenKind::Comment => {
self.consume();
None
}
_ => Some(self.expression_stmt()?),
};
Ok(stmt)
}
/// Parses an `impl` block for implementing a struct.
///
/// An `impl` block is used to implement methods for a struct.
///
/// # Returns
/// - `Ok(Stmt)`: An impl block.
/// - `Err`: If there is a parsing error.
pub fn parse_impl(&mut self, impl_keyword: Token, ident: Token) -> Result<Stmt> {
debug!("Parsing impl block");
self.expect(TokenKind::LeftBrace)?;
let mut methods: Vec<crate::Fn> = vec![];
while self.peek().kind != TokenKind::RightBrace && !self.is_eof() {
let func = self.parse_fn()?.into_function();
methods.push(func);
}
self.expect(TokenKind::RightBrace)?;
Ok(Stmt::new_struct_impl(impl_keyword, ident, methods))
}
/// Parses an `impl` block for implementing a trait.
///
/// An `impl` block is used to implement methods for a trait.
///
/// # Returns
/// - `Ok(Stmt)`: An impl block.
/// - `Err`: If there is a parsing error.
pub fn parse_trait_impl(&mut self, impl_keyword: Token, ident: Token) -> Result<Stmt> {
debug!("Parsing impl block");
let for_token = self.expect(TokenKind::For)?;
let trait_name = self.expect(TokenKind::Identifier)?;
self.expect(TokenKind::LeftBrace)?;
let mut methods: Vec<crate::Fn> = vec![];
while self.peek().kind != TokenKind::RightBrace && !self.is_eof() {
let func = self.parse_fn()?.into_function();
methods.push(func);
}
self.expect(TokenKind::RightBrace)?;
Ok(Stmt::new_trait_impl(
impl_keyword,
ident,
for_token,
trait_name,
methods,
))
}
/// Parses a 'pub' keyword (if present) followed by an identifier.
pub fn parse_pub(&mut self, expected: TokenKind) -> Result<(Token, bool)> {
let mut public = false;
let token = if self.peek().kind == TokenKind::Pub {
self.consume();
public = true;
self.consume()
} else {
self.consume()
};
Ok((token, public))
}
/// Parses a `trait` declaration.
///
/// A `trait` declaration defines a new interface that can be implemented by other types.
///
/// # Returns
/// - `Ok(Stmt)`: A trait declaration.
/// - `Err`: If there is a parsing error.
pub fn parse_trait(&mut self) -> Result<Stmt> {
debug!("Parsing trait");
let (trait_token, public) = self.parse_pub(TokenKind::Trait)?;
let name = self.expect(TokenKind::Identifier)?;
self.expect(TokenKind::LeftBrace)?;
let mut methods: Vec<crate::Fn> = vec![];
while self.peek().kind != TokenKind::RightBrace && !self.is_eof() {
let func = self.parse_fn()?.into_function();
methods.push(func);
}
self.expect(TokenKind::RightBrace)?;
Ok(Stmt::new_trait_def(trait_token, name, methods, public))
}
/// Parses an expression statement.
///
/// An expression statement is a statement that consists of an expression followed by a semicolon.
///
/// # Returns
///
/// - `Stmt`: An expression statement.
/// - `Err`: If there is a parsing error.
pub fn parse_const(&mut self) -> Result<Stmt> {
debug!("Parsing const");
let (_, public) = self.parse_pub(TokenKind::Const)?;
let name = self.expect(TokenKind::Identifier)?;
self.expect(TokenKind::Equals)?;
let expr = self.parse_expr()?;
Ok(Stmt::new_const(Box::new(expr), name, public))
}
/// Parses a `struct` declaration.
///
/// A `struct` declaration defines a new data structure with named fields.
///
/// # Returns
/// - `Ok(Stmt)`: A struct declaration.
/// - `Err`: If there is a parsing error.
pub fn parse_struct(&mut self) -> Result<Stmt> {
debug!("Parsing struct");
let (struct_token, public) = self.parse_pub(TokenKind::Struct)?;
let name = self.expect(TokenKind::Identifier)?;
self.expect(TokenKind::LeftBrace)?;
let mut fields: Vec<StructField> = vec![];
while self.peek().kind != TokenKind::RightBrace && !self.is_eof() {
let ident = self.expect(TokenKind::Identifier)?;
let type_annotation = self.parse_type_annotation()?;
fields.push(StructField {
ident,
type_annotation,
});
if self.peek().kind != TokenKind::RightBrace {
self.expect(TokenKind::Comma)?;
}
}
self.expect(TokenKind::RightBrace)?;
Ok(Stmt::new_struct(struct_token, name, fields, public))
}
/// Parses a `while` statement.
///
/// A `while` statement is used to execute a block of code repeatedly as long as a condition is true.
///
/// # Returns
/// - `Ok(Stmt)`: A while statement.
/// - `Err`: If there is a parsing error.
pub fn parse_while(&mut self) -> Result<Option<Stmt>> {
debug!("Parsing while statement");
let while_token = self.consume();
self.push_context(ParseContext::WhileCondition);
let condition = self.parse_expr()?;
self.pop_context();
self.expect(TokenKind::LeftBrace)?;
let block = self.parse_block()?;
self.expect(TokenKind::RightBrace)?;
Ok(Some(Stmt::new_while(while_token, condition, block)))
}
/// Parses a `throw` statement.
///
/// A `throw` statement is used to raise an exception.
///
/// # Returns
/// - `Ok(Stmt)`: A throw statement.
/// - `Err`: If there is a parsing error.
pub fn parse_throw(&mut self) -> Result<Stmt> {
debug!("Parsing throw statement");
let throw_token = self.consume();
let value = self.parse_expr()?;
self.possible_check(TokenKind::Semicolon);
Ok(Stmt::new_throw(throw_token, value))
}
/// Parses a `try` statement with a `catch` block.
///
/// The `try` statement lets you catch exceptions and handle errors in a safe way.
///
/// # Returns
/// - `Ok(Stmt)`: A try-catch statement.
/// - `Err`: If there is a parsing error.
pub fn parse_try(&mut self) -> Result<Stmt> {
debug!("Parsing try statement");
let try_token = self.consume();
self.expect(TokenKind::LeftBrace)?;
let try_block = self.parse_block()?;
self.expect(TokenKind::RightBrace)?;
self.expect(TokenKind::Catch)?;
let error_ident = self.expect(TokenKind::Identifier)?;
self.expect(TokenKind::LeftBrace)?;
let catch_block = self.parse_block()?;
self.expect(TokenKind::RightBrace)?;
Ok(Stmt::new_try(
try_token,
try_block,
error_ident,
catch_block,
))
}
/// Parses a `return` statement.
///
/// The `return` statement is used to return a value from a function.
///
/// # Returns
/// - `Ok(Some(Stmt))`: A return statement with or without a value.
/// - `Err`: If there is a parsing error.
pub fn parse_return(&mut self) -> Result<Option<Stmt>> {
debug!("Parsing return statement");
let return_token = self.consume();
let value = if self.peek().kind != TokenKind::Semicolon {
Some(Box::new(self.parse_expr()?))
} else {
None
};
self.possible_check(TokenKind::Semicolon);
Ok(Some(Stmt::new_return(return_token, value)))
}
/// Parses a `let` statement.
///
/// A `let` statement declares a new variable with an optional type annotation.
///
/// # Returns
/// - `Ok(Stmt)`: A variable declaration statement.
/// - `Err`: If there is a parsing error.
pub fn parse_let(&mut self) -> Result<Stmt> {
debug!("Parsing let statement");
self.expect(TokenKind::Let)?;
let ident = self.expect(TokenKind::Identifier)?;
let type_annotation = self.parse_optional_type_annotation()?;
self.expect(TokenKind::Equals)?;
let value = self.parse_expr()?;
Ok(Stmt::new_let(ident, Box::new(value), type_annotation))
}
/// Parses an `if` statement with optional `else if` and `else` blocks.
///
/// An `if` statement is used for conditional logic.
///
/// # Returns
/// - `Ok(Stmt)`: An if statement with possible elseif and else blocks.
/// - `Err`: If there is a parsing error.
pub fn parse_if(&mut self) -> Result<Stmt> {
debug!("Parsing if statement");
let if_token = self.consume();
self.push_context(ParseContext::IfCondition);
let condition = self.parse_expr()?;
self.pop_context();
self.expect(TokenKind::LeftBrace)?;
let body = self.parse_block()?;
self.expect(TokenKind::RightBrace)?;
let mut elseif_blocks = vec![];
let mut else_block: Option<ElseBlock> = None;
while self.peek().kind == TokenKind::Else {
self.consume();
if self.peek().kind == TokenKind::If {
self.consume();
self.possible_check(TokenKind::LeftParen);
self.push_context(ParseContext::IfCondition);
let elseif_condition = self.parse_expr()?;
self.pop_context();
self.possible_check(TokenKind::RightParen);
self.expect(TokenKind::LeftBrace)?;
let elseif_body = self.parse_block()?;
self.expect(TokenKind::RightBrace)?;
elseif_blocks.push(ElseBlock {
condition: Box::new(elseif_condition),
block: elseif_body,
else_if: true,
});
} else {
self.expect(TokenKind::LeftBrace)?;
let else_body = self.parse_block()?;
self.expect(TokenKind::RightBrace)?;
else_block = Some(ElseBlock {
condition: Box::new(condition.clone()),
block: else_body,
else_if: false,
});
}
}
Ok(Stmt::new_if(
if_token,
condition.into(),
body,
elseif_blocks.into(),
else_block,
))
}
/// Parses a `use` statement for importing modules.
///
/// A `use` statement allows importing items from other modules or files.
///
/// # Returns
/// - `Ok(Stmt)`: A use statement.
/// - `Err`: If there is a parsing error.
pub fn parse_use(&mut self) -> Result<Stmt> {
debug!("Parsing use statement");
let use_token = self.consume();
let mut items = vec![];
self.expect(TokenKind::LeftBrace)?;
while self.peek().kind != TokenKind::RightBrace && !self.is_eof() {
let item = self.expect(TokenKind::Identifier)?;
if self.peek().kind != TokenKind::RightBrace {
self.expect(TokenKind::Comma)?;
}
items.push(item);
}
self.expect(TokenKind::RightBrace)?;
self.expect(TokenKind::From)?;
let from = if self.peek().is_string() {
self.consume()
} else {
return Err(ExpectedToken(
"string".to_string(),
"Expected string that is valid module or file".to_string(),
self.peek().span.clone(),
)
.into());
};
Ok(Stmt::new_use(use_token, from, items))
}
/// Checks if the next token is a question mark and consumes it.
pub fn is_nullable(&mut self) -> bool {
if self.peek().kind == TokenKind::QuestionMark {
self.consume();
true
} else {
false
}
}
/// Helper method to parse a type with optional array and nullability.
fn parse_type(&mut self) -> Result<(Token, bool)> {
let type_name = self.expect(TokenKind::Identifier)?;
Parser::validate_type_name(type_name.clone())?;
let is_array = if self.peek().kind == TokenKind::LeftBracket {
self.consume();
self.expect(TokenKind::RightBracket)?;
true
} else {
false
};
Ok((type_name, is_array))
}
/// Parses a type annotation following a variable or parameter.
///
/// # Returns
/// - `Ok(TypeAnnotation)`: A parsed type annotation.
/// - `Err`: If there is a parsing error.
pub fn parse_type_annotation(&mut self) -> Result<TypeAnnotation> {
debug!("Parsing type annotation");
let colon = self.expect(TokenKind::Colon)?;
let (type_name, is_array) = self.parse_type()?;
Ok(TypeAnnotation {
type_name,
is_array,
is_nullable: self.is_nullable(),
colon,
})
}
/// Parses the return type of function.
///
/// # Returns
/// - `Ok(Some(FunctionType))`: If the return type is parsed.
/// - `Ok(None)`: If no return type is provided.
/// - `Err`: If the syntax is incorrect.
pub fn parse_return_type(&mut self) -> Result<Option<FunctionType>> {
debug!("Parsing return type");
if self.peek().kind != TokenKind::Arrow {
return Ok(None);
}
let arrow = self.consume(); // consume the arrow
let (type_name, is_array) = self.parse_type()?;
Ok(Some(FunctionType {
type_name,
is_array,
is_nullable: self.is_nullable(),
arrow,
}))
}
/// Validates if the provided string is valid type name.
///
/// # Returns
/// - `Ok(())`: If the type name is valid.
/// - `Err`: If the type name is invalid.
pub fn validate_type_name(token: Token) -> Result<()> {
let name = token.literal();
debug!("Validating type name: {}", name);
if !VALID_TYPE_NAMES.contains(&&*name) {
debug!("Invalid type name: {}", name);
return Err(InvalidType(
name.cyan().to_string(),
VALID_TYPE_NAMES.join(", "),
token.span.clone(),
)
.into());
}
Ok(())
}
/// Parses a block of statements enclosed by curly braces `{}`.
///
/// A block is a group of statements that are executed in sequence.
///
/// # Returns
/// - `Ok(Block)`: A parsed block of statements.
/// - `Err`: If there is a parsing error.
pub fn parse_block(&mut self) -> Result<Block> {
debug!("Parsing block");
let mut stmts = vec![];
while self.peek().kind != TokenKind::RightBrace && !self.is_eof() {
let stmt = self.parse_stmt()?;
if let Some(stmt) = stmt {
debug!("Adding statement to block");
stmts.push(stmt);
}
}
Ok(Block { stmts })
}
/// Parses a function declaration.
///
/// A function declaration defines a new function, including its parameters, return type, and body.
///
/// # Returns
/// - `Ok(Stmt)`: A function declaration.
/// - `Err`: If there is a parsing error.
pub fn parse_fn(&mut self) -> Result<Stmt> {
debug!("Parsing function");
self.possible_check(TokenKind::Comment);
let (fn_token, public) = self.parse_pub(TokenKind::Fn)?;
let name = self.expect(TokenKind::Identifier)?;
self.expect(TokenKind::LeftParen)?;
let mut params = vec![];
let mut has_rest_param = false;
let mut is_static = true;
if self.peek().kind != TokenKind::RightParen {
while self.peek().kind != TokenKind::RightParen && !self.is_eof() {
self.possible_check(TokenKind::Comma);
let is_rest = self.peek().kind == TokenKind::TripleDot;
if is_rest {
if has_rest_param {
return Err(MultipleRestParameters(self.peek().span.clone()).into());
}
has_rest_param = true;
self.consume();
}
let param = self.consume();
if param.literal() == "self" {
if !is_static {
return Err(MultipleSelfParameters(self.peek().span.clone()).into());
}
is_static = false;
if is_rest {
return Err(SelfParameterCannotBeRest(self.peek().span.clone()).into());
}
}
let type_annotation = self.parse_optional_type_annotation()?;
if has_rest_param && self.peek().kind != TokenKind::RightParen {
return Err(RestParameterNotLastPosition(param.span.clone()).into());
}
params.push(FnParam {
type_annotation,
ident: param,
is_rest,
});
}
}
if !is_static && params[0].ident.literal() != "self" {
return Err(SelfParameterNotFirst(self.peek().span.clone()).into());
}
self.expect(TokenKind::RightParen)?;
let return_type = self.parse_return_type()?;
let mut body = Block { stmts: vec![] };
if self.peek().kind != TokenKind::LeftBrace {
self.expect(TokenKind::Semicolon)?;
} else {
self.expect(TokenKind::LeftBrace)?;
body = self.parse_block()?;
self.expect(TokenKind::RightBrace)?;
}
Ok(Stmt::new_fn(
fn_token,
name.literal(),
params,
body,
public,
return_type,
is_static,
))
}
}