1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
pub use bio::io::fasta::Reader;
pub use hashbrown::HashMap;
pub use itertools::multizip;
pub use num::{
  range, range_inclusive, Bounded, FromPrimitive, Integer, One, PrimInt, ToPrimitive, Unsigned,
  Zero,
};
pub use rna_ss_params::compiled_free_energy_params_contra::*;
pub use rna_ss_params::compiled_free_energy_params_turner::*;
pub use rna_ss_params::utils::*;
pub use scoped_threadpool::Pool;
pub use std::cmp::{max, min};
pub use std::env;
pub use std::f32::NEG_INFINITY;
pub use std::fmt::Display;
pub use std::fs::create_dir;
pub use std::fs::File;
pub use std::hash::Hash;
pub use std::io::prelude::*;
pub use std::io::{BufReader, BufWriter};
pub use std::path::Path;
pub use std::str::from_utf8_unchecked;

pub trait HashIndex:
  Unsigned
  + PrimInt
  + Hash
  + FromPrimitive
  + ToPrimitive
  + Clone
  + Integer
  + Eq
  + One
  + Ord
  + Display
  + Sync
  + Send
{
}
impl<T: Unsigned + PrimInt + Hash + FromPrimitive + Integer + One + Ord + Display + Sync + Send>
  HashIndex for T
{
}

pub type PosPair<T> = (T, T);
pub type PosQuadruple<T> = (T, T, T, T);
pub type Num = usize;
type NumPair = (Num, Num);
type Arg = String;
pub type Args = Vec<Arg>;
pub type FastaId = String;
#[derive(Clone)]
pub struct FastaRecord {
  pub fasta_id: FastaId,
  pub seq: Seq,
}
#[derive(Debug)]
pub struct SeqAlign<T> {
  pub cols: Cols,
  pub pos_map_sets: PosMapSets<T>,
}
pub type PosMaps<T> = Vec<T>;
pub type PosMapSets<T> = Vec<PosMaps<T>>;
pub type FastaRecords = Vec<FastaRecord>;
pub type SeqSlice<'a> = &'a [Base];
pub type NumOfThreads = u32;
pub type SparseProbMat<T> = HashMap<PosPair<T>, Prob>;
pub type BaScoreMat = HashMap<BasePair, FreeEnergy>;
pub type BpaScoreMat = HashMap<(BasePair, BasePair), FreeEnergy>;
pub type SeqId = String;
pub type SeqIds = Vec<SeqId>;
pub type Col = Vec<Base>;
pub type Cols = Vec<Col>;
pub type PartFunc4dMat<T> = HashMap<PosQuadruple<T>, PartFunc>;
pub type SparsePartFuncMat<T> = HashMap<PosPair<T>, PartFunc>;
pub type FreeEnergies = Vec<FreeEnergy>;
pub type FreeEnergyMat = Vec<FreeEnergies>;
pub type SparseFreeEnergyMat<T> = HashMap<PosPair<T>, FreeEnergy>;
pub type PosPairs<T> = Vec<PosPair<T>>;
pub type Mea = Prob;
pub type MeaSsChar = u8;
pub type MeaSsStr = Vec<MeaSsChar>;
pub type Char = u8;
pub type Seq = Vec<Base>;
pub type SeqPair<'a> = (SeqSlice<'a>, SeqSlice<'a>);
pub type Prob = f32;
pub type LogProb = Prob;
pub type PartFunc = Prob;
pub type Probs = Vec<Prob>;
pub type ProbMat = Vec<Probs>;
pub type PartFuncs = Vec<PartFunc>;
pub type PartFuncMat = Vec<PartFuncs>;
pub type Pos = usize;
pub type Base = usize;
pub type MatchScoreMat = [[Prob; NUM_OF_BASES]; NUM_OF_BASES];
pub type InsertScores = [Prob; NUM_OF_BASES];
pub type RnaId = usize;
pub type RnaIdPair = (RnaId, RnaId);
pub type ProbMatsWithRnaIdPairs = HashMap<RnaIdPair, ProbMat>;
pub type FeatureCount = Prob;

#[derive(Clone, Debug)]
pub struct StructFeatureCountSets {
  // The CONTRAfold model.
  pub hairpin_loop_length_counts: HairpinLoopLengthCounts,
  pub bulge_loop_length_counts: BulgeLoopLengthCounts,
  pub interior_loop_length_counts: InteriorLoopLengthCounts,
  pub interior_loop_length_counts_symm: InteriorLoopLengthCountsSymm,
  pub interior_loop_length_counts_asymm: InteriorLoopLengthCountsAsymm,
  pub stack_count_mat: StackCountMat,
  pub terminal_mismatch_count_mat: TerminalMismatchCount4dMat,
  pub left_dangle_count_mat: DangleCount3dMat,
  pub right_dangle_count_mat: DangleCount3dMat,
  pub helix_end_count_mat: HelixEndCountMat,
  pub base_pair_count_mat: BasePairCountMat,
  pub interior_loop_length_count_mat_explicit: InteriorLoopLengthCountMatExplicit,
  pub bulge_loop_0x1_length_counts: BulgeLoop0x1LengthCounts,
  pub interior_loop_1x1_length_count_mat: InteriorLoop1x1LengthCountMat,
  pub multi_loop_base_count: FeatureCount,
  pub multi_loop_basepairing_count: FeatureCount,
  pub multi_loop_accessible_baseunpairing_count: FeatureCount,
  pub external_loop_accessible_basepairing_count: FeatureCount,
  pub external_loop_accessible_baseunpairing_count: FeatureCount,
  // The cumulative parameters of the CONTRAfold model.
  pub hairpin_loop_length_counts_cumulative: HairpinLoopLengthCounts,
  pub bulge_loop_length_counts_cumulative: BulgeLoopLengthCounts,
  pub interior_loop_length_counts_cumulative: InteriorLoopLengthCounts,
  pub interior_loop_length_counts_symm_cumulative: InteriorLoopLengthCountsSymm,
  pub interior_loop_length_counts_asymm_cumulative: InteriorLoopLengthCountsAsymm,
}

pub type TerminalMismatchCount3dMat = [[[FeatureCount; NUM_OF_BASES]; NUM_OF_BASES]; NUM_OF_BASES];
pub type TerminalMismatchCount4dMat = [TerminalMismatchCount3dMat; NUM_OF_BASES];
pub type StackCountMat = TerminalMismatchCount4dMat;
pub type HelixEndCountMat = [[FeatureCount; NUM_OF_BASES]; NUM_OF_BASES];
pub type AlignCountMat = HelixEndCountMat;
pub type InsertCounts = [FeatureCount; NUM_OF_BASES];
pub type HairpinLoopLengthCounts = [FeatureCount; CONSPROB_MAX_HAIRPIN_LOOP_LEN + 1];
pub type BulgeLoopLengthCounts = [FeatureCount; CONSPROB_MAX_TWOLOOP_LEN];
pub type InteriorLoopLengthCounts = [FeatureCount; CONSPROB_MAX_TWOLOOP_LEN - 1];
pub type InteriorLoopLengthCountsSymm = [FeatureCount; CONSPROB_MAX_INTERIOR_LOOP_LEN_SYMM];
pub type InteriorLoopLengthCountsAsymm = [FeatureCount; CONSPROB_MAX_INTERIOR_LOOP_LEN_ASYMM];
pub type DangleCount3dMat = [[[FeatureCount; NUM_OF_BASES]; NUM_OF_BASES]; NUM_OF_BASES];
pub type BasePairCountMat = HelixEndCountMat;
pub type InteriorLoopLengthCountMatExplicit = [[FeatureCount;
  CONSPROB_MAX_INTERIOR_LOOP_LEN_EXPLICIT];
  CONSPROB_MAX_INTERIOR_LOOP_LEN_EXPLICIT];
pub type BulgeLoop0x1LengthCounts = [FeatureCount; NUM_OF_BASES];
pub type InteriorLoop1x1LengthCountMat = [[FeatureCount; NUM_OF_BASES]; NUM_OF_BASES];
pub type InteriorLoopLengthCountMat =
  [[FeatureCount; CONSPROB_MAX_TWOLOOP_LEN - 1]; CONSPROB_MAX_TWOLOOP_LEN - 1];

pub const MAX_SPAN_OF_INDEX_PAIR_CLOSING_IL: usize = MAX_2_LOOP_LEN + 2;
pub const MIN_SPAN_OF_INDEX_PAIR_CLOSING_ML: usize = MIN_SPAN_OF_INDEX_PAIR_CLOSING_HL * 2 + 2;
pub const SMALL_A: u8 = 'a' as u8;
pub const BIG_A: u8 = 'A' as u8;
pub const SMALL_C: u8 = 'c' as u8;
pub const BIG_C: u8 = 'C' as u8;
pub const SMALL_G: u8 = 'g' as u8;
pub const BIG_G: u8 = 'G' as u8;
pub const SMALL_U: u8 = 'u' as u8;
pub const BIG_U: u8 = 'U' as u8;
pub const LOGSUMEXP_THRES_UPPER: FreeEnergy = 11.8624794162;
pub const A: Base = 0;
pub const C: Base = 1;
pub const G: Base = 2;
pub const U: Base = 3;
pub const PSEUDO_BASE: Base = U + 1 as Base;
pub const UNPAIRING_BASE: MeaSsChar = '.' as MeaSsChar;
pub const BASE_PAIRING_LEFT_BASE: MeaSsChar = '(' as MeaSsChar;
pub const BASE_PAIRING_RIGHT_BASE: MeaSsChar = ')' as MeaSsChar;
pub const NUM_OF_BASES: usize = 4;
pub const CONSPROB_MAX_HAIRPIN_LOOP_LEN: usize = 30;
pub const CONSPROB_MAX_TWOLOOP_LEN: usize = CONSPROB_MAX_HAIRPIN_LOOP_LEN;
pub const CONSPROB_MIN_HAIRPIN_LOOP_LEN: usize = 3;
pub const CONSPROB_MIN_HAIRPIN_LOOP_SPAN: usize = CONSPROB_MIN_HAIRPIN_LOOP_LEN + 2;
pub const CONSPROB_MAX_INTERIOR_LOOP_LEN_EXPLICIT: usize = 4;
pub const CONSPROB_MAX_INTERIOR_LOOP_LEN_SYMM: usize = CONSPROB_MAX_TWOLOOP_LEN / 2;
pub const CONSPROB_MAX_INTERIOR_LOOP_LEN_ASYMM: usize = CONSPROB_MAX_TWOLOOP_LEN - 2;

impl FastaRecord {
  pub fn origin() -> FastaRecord {
    FastaRecord {
      fasta_id: FastaId::new(),
      seq: Seq::new(),
    }
  }
  pub fn new(fasta_id: FastaId, seq: Seq) -> FastaRecord {
    FastaRecord {
      fasta_id: fasta_id,
      seq: seq,
    }
  }
}

impl<T> SeqAlign<T> {
  pub fn new() -> SeqAlign<T> {
    SeqAlign {
      cols: Cols::new(),
      pos_map_sets: PosMapSets::<T>::new(),
    }
  }
}

pub fn is_canonical(bp: &BasePair) -> bool {
  match *bp {
    AU | CG | GC | GU | UA | UG => true,
    _ => false,
  }
}

pub fn get_hl_fe(seq: SeqSlice, pp_closing_loop: &(usize, usize)) -> FreeEnergy {
  let hl = &seq[pp_closing_loop.0..pp_closing_loop.1 + 1];
  let special_hl_fe = get_special_hl_fe(hl);
  if special_hl_fe > NEG_INFINITY {
    special_hl_fe
  } else {
    let hl_len = pp_closing_loop.1 - pp_closing_loop.0 - 1;
    let bp_closing_hl = (seq[pp_closing_loop.0], seq[pp_closing_loop.1]);
    let hl_fe = if hl_len == MIN_HL_LEN {
      INIT_HL_DELTA_FES[hl_len]
    } else {
      let tm = (seq[pp_closing_loop.0 + 1], seq[pp_closing_loop.1 - 1]);
      let init_hl_delta_fe = if hl_len <= MAX_LOOP_LEN_4_LOG_EXTRAPOLATION_OF_INIT_LOOP_DELTA_FE {
        INIT_HL_DELTA_FES[hl_len]
      } else {
        INIT_HL_DELTA_FES[MIN_LOOP_LEN_4_LOG_EXTRAPOLATION_OF_INIT_HL_DELTA_FE - 1]
          + COEFFICIENT_4_LOG_EXTRAPOLATION_OF_INIT_HL_DELTA_FE
            * (hl_len as FreeEnergy
              / (MIN_LOOP_LEN_4_LOG_EXTRAPOLATION_OF_INIT_HL_DELTA_FE - 1) as FreeEnergy)
              .ln()
      };
      init_hl_delta_fe + HL_TM_DELTA_FES[bp_closing_hl.0][bp_closing_hl.1][tm.0][tm.1]
    };
    hl_fe
      + if is_au_or_gu(&bp_closing_hl) {
        HELIX_AU_OR_GU_END_PENALTY_DELTA_FE
      } else {
        0.
      }
  }
}

pub fn get_special_hl_fe(seq: SeqSlice) -> FreeEnergy {
  for special_hl_delta_fe in SPECIAL_HL_DELTA_FES.iter() {
    if special_hl_delta_fe.0 == seq {
      return special_hl_delta_fe.1;
    }
  }
  NEG_INFINITY
}

pub fn get_2_loop_fe(
  seq: SeqSlice,
  pp_closing_loop: &(usize, usize),
  accessible_pp: &(usize, usize),
) -> FreeEnergy {
  if pp_closing_loop.0 + 1 == accessible_pp.0 && pp_closing_loop.1 - 1 == accessible_pp.1 {
    get_stack_fe(seq, pp_closing_loop, accessible_pp)
  } else if pp_closing_loop.0 + 1 == accessible_pp.0 || pp_closing_loop.1 - 1 == accessible_pp.1 {
    get_bl_fe(seq, pp_closing_loop, accessible_pp)
  } else {
    get_il_fe(seq, pp_closing_loop, accessible_pp)
  }
}

fn get_stack_fe(
  seq: SeqSlice,
  pp_closing_loop: &(usize, usize),
  accessible_pp: &(usize, usize),
) -> FreeEnergy {
  let bp_closing_loop = (seq[pp_closing_loop.0], seq[pp_closing_loop.1]);
  let accessible_bp = (seq[accessible_pp.0], seq[accessible_pp.1]);
  STACK_DELTA_FES[bp_closing_loop.0][bp_closing_loop.1][accessible_bp.0][accessible_bp.1]
}

fn get_bl_fe(
  seq: SeqSlice,
  pp_closing_loop: &(usize, usize),
  accessible_pp: &(usize, usize),
) -> FreeEnergy {
  let bl_len = accessible_pp.0 - pp_closing_loop.0 + pp_closing_loop.1 - accessible_pp.1 - 2;
  if bl_len == 1 {
    INIT_BL_DELTA_FES[bl_len] + get_stack_fe(seq, pp_closing_loop, accessible_pp)
  } else {
    let bp_closing_loop = (seq[pp_closing_loop.0], seq[pp_closing_loop.1]);
    let accessible_bp = (seq[accessible_pp.0], seq[accessible_pp.1]);
    INIT_BL_DELTA_FES[bl_len]
      + if is_au_or_gu(&bp_closing_loop) {
        HELIX_AU_OR_GU_END_PENALTY_DELTA_FE
      } else {
        0.
      }
      + if is_au_or_gu(&accessible_bp) {
        HELIX_AU_OR_GU_END_PENALTY_DELTA_FE
      } else {
        0.
      }
  }
}

fn get_il_fe(
  seq: SeqSlice,
  pp_closing_loop: &(usize, usize),
  accessible_pp: &(usize, usize),
) -> FreeEnergy {
  let bp_closing_loop = (seq[pp_closing_loop.0], seq[pp_closing_loop.1]);
  let accessible_bp = (seq[accessible_pp.0], seq[accessible_pp.1]);
  let pair_of_nums_of_unpaired_bases = (
    accessible_pp.0 - pp_closing_loop.0 - 1,
    pp_closing_loop.1 - accessible_pp.1 - 1,
  );
  let il_len = pair_of_nums_of_unpaired_bases.0 + pair_of_nums_of_unpaired_bases.1;
  match pair_of_nums_of_unpaired_bases {
    (1, 1) => {
      let il = (seq[pp_closing_loop.0 + 1], seq[pp_closing_loop.1 - 1]);
      ONE_VS_1_IL_DELTA_FES[bp_closing_loop.0][bp_closing_loop.1][il.0][il.1][accessible_bp.0]
        [accessible_bp.1]
    }
    (1, 2) => {
      let il = (
        (seq[pp_closing_loop.0 + 1], seq[pp_closing_loop.1 - 1]),
        seq[pp_closing_loop.1 - 2],
      );
      ONE_VS_2_IL_DELTA_FES[bp_closing_loop.0][bp_closing_loop.1][(il.0).0][(il.0).1][il.1]
        [accessible_bp.0][accessible_bp.1]
    }
    (2, 1) => {
      let il = (
        (seq[pp_closing_loop.1 - 1], seq[pp_closing_loop.0 + 2]),
        seq[pp_closing_loop.0 + 1],
      );
      let invert_accessible_bp = invert_bp(&accessible_bp);
      let invert_bp_closing_loop = invert_bp(&bp_closing_loop);
      ONE_VS_2_IL_DELTA_FES[invert_accessible_bp.0][invert_accessible_bp.1][(il.0).0][(il.0).1]
        [il.1][invert_bp_closing_loop.0][invert_bp_closing_loop.1]
    }
    (2, 2) => {
      let il = (
        (seq[pp_closing_loop.0 + 1], seq[pp_closing_loop.1 - 1]),
        (seq[pp_closing_loop.0 + 2], seq[pp_closing_loop.1 - 2]),
      );
      TWO_VS_2_IL_DELTA_FES[bp_closing_loop.0][bp_closing_loop.1][(il.0).0][(il.0).1][(il.1).0]
        [(il.1).1][accessible_bp.0][accessible_bp.1]
    }
    _ => {
      INIT_IL_DELTA_FES[il_len]
        + (COEFFICIENT_4_NINIO
          * get_abs_diff(
            pair_of_nums_of_unpaired_bases.0,
            pair_of_nums_of_unpaired_bases.1,
          ) as FreeEnergy)
          .max(MAX_NINIO)
        + get_il_tm_delta_fe(
          seq,
          pp_closing_loop,
          accessible_pp,
          &pair_of_nums_of_unpaired_bases,
        )
        + if is_au_or_gu(&bp_closing_loop) {
          HELIX_AU_OR_GU_END_PENALTY_DELTA_FE
        } else {
          0.
        }
        + if is_au_or_gu(&accessible_bp) {
          HELIX_AU_OR_GU_END_PENALTY_DELTA_FE
        } else {
          0.
        }
    }
  }
}

pub fn invert_bp(bp: &BasePair) -> BasePair {
  (bp.1, bp.0)
}

pub fn get_abs_diff(x: usize, y: usize) -> usize {
  max(x, y) - min(x, y)
}

fn get_il_tm_delta_fe(
  seq: SeqSlice,
  pp_closing_loop: &(usize, usize),
  accessible_pp: &(usize, usize),
  pair_of_nums_of_unpaired_bases: &NumPair,
) -> FreeEnergy {
  let bp_closing_loop = (seq[pp_closing_loop.0], seq[pp_closing_loop.1]);
  let accessible_bp = (seq[accessible_pp.1], seq[accessible_pp.0]);
  let tm_pair = (
    (seq[pp_closing_loop.0 + 1], seq[pp_closing_loop.1 - 1]),
    (seq[accessible_pp.1 + 1], seq[accessible_pp.0 - 1]),
  );
  match *pair_of_nums_of_unpaired_bases {
    (1, _) => {
      ONE_VS_MANY_IL_TM_DELTA_FES[bp_closing_loop.0][bp_closing_loop.1][(tm_pair.0).0]
        [(tm_pair.0).1]
        + ONE_VS_MANY_IL_TM_DELTA_FES[accessible_bp.0][accessible_bp.1][(tm_pair.1).0]
          [(tm_pair.1).1]
    }
    (_, 1) => {
      ONE_VS_MANY_IL_TM_DELTA_FES[bp_closing_loop.0][bp_closing_loop.1][(tm_pair.0).0]
        [(tm_pair.0).1]
        + ONE_VS_MANY_IL_TM_DELTA_FES[accessible_bp.0][accessible_bp.1][(tm_pair.1).0]
          [(tm_pair.1).1]
    }
    (2, 3) => {
      TWO_VS_3_IL_TM_DELTA_FES[bp_closing_loop.0][bp_closing_loop.1][(tm_pair.0).0][(tm_pair.0).1]
        + TWO_VS_3_IL_TM_DELTA_FES[accessible_bp.0][accessible_bp.1][(tm_pair.1).0][(tm_pair.1).1]
    }
    (3, 2) => {
      TWO_VS_3_IL_TM_DELTA_FES[bp_closing_loop.0][bp_closing_loop.1][(tm_pair.0).0][(tm_pair.0).1]
        + TWO_VS_3_IL_TM_DELTA_FES[accessible_bp.0][accessible_bp.1][(tm_pair.1).0][(tm_pair.1).1]
    }
    _ => {
      IL_TM_DELTA_FES[bp_closing_loop.0][bp_closing_loop.1][(tm_pair.0).0][(tm_pair.0).1]
        + IL_TM_DELTA_FES[accessible_bp.0][accessible_bp.1][(tm_pair.1).0][(tm_pair.1).1]
    }
  }
}

pub fn get_ml_closing_basepairing_fe(
  seq: SeqSlice,
  pp_closing_loop: &(usize, usize),
) -> FreeEnergy {
  let bp_closing_loop = (seq[pp_closing_loop.0], seq[pp_closing_loop.1]);
  let invert_bp_closing_loop = invert_bp(&bp_closing_loop);
  let invert_stacking_bp = invert_bp(&(seq[pp_closing_loop.0 + 1], seq[pp_closing_loop.1 - 1]));
  let ml_tm_delta_fe = ML_TM_DELTA_FES[invert_bp_closing_loop.0][invert_bp_closing_loop.1]
    [invert_stacking_bp.0][invert_stacking_bp.1];
  CONST_4_INIT_ML_DELTA_FE
    + ml_tm_delta_fe
    + if is_au_or_gu(&bp_closing_loop) {
      HELIX_AU_OR_GU_END_PENALTY_DELTA_FE
    } else {
      0.
    }
}

pub fn get_ml_or_el_accessible_basepairing_fe(
  seq: SeqSlice,
  pp_accessible: &(usize, usize),
  use_sentinel_nucs: bool,
) -> FreeEnergy {
  let seq_len = seq.len();
  let five_prime_end = if use_sentinel_nucs { 1 } else { 0 };
  let three_prime_end = seq_len - if use_sentinel_nucs { 2 } else { 1 };
  let accessible_bp = (seq[pp_accessible.0], seq[pp_accessible.1]);
  let fe = if pp_accessible.0 > five_prime_end && pp_accessible.1 < three_prime_end {
    ML_TM_DELTA_FES[accessible_bp.0][accessible_bp.1][seq[pp_accessible.0 - 1]]
      [seq[pp_accessible.1 + 1]]
  } else if pp_accessible.0 > five_prime_end {
    FIVE_PRIME_DE_DELTA_FES[accessible_bp.0][accessible_bp.1][seq[pp_accessible.0 - 1]]
  } else if pp_accessible.1 < three_prime_end {
    THREE_PRIME_DE_DELTA_FES[accessible_bp.0][accessible_bp.1][seq[pp_accessible.1 + 1]]
  } else {
    0.
  } + if is_au_or_gu(&accessible_bp) {
    HELIX_AU_OR_GU_END_PENALTY_DELTA_FE
  } else {
    0.
  };
  fe
}

pub fn get_hl_fe_contra(
  seq: SeqSlice,
  pp_closing_loop: &(usize, usize),
  struct_feature_score_sets: &StructFeatureCountSets,
) -> FreeEnergy {
  let hl_len = pp_closing_loop.1 - pp_closing_loop.0 - 1;
  struct_feature_score_sets.hairpin_loop_length_counts_cumulative[hl_len.min(CONTRA_MAX_LOOP_LEN)]
    + get_contra_junction_fe_single(seq, pp_closing_loop, struct_feature_score_sets)
}

pub fn get_2_loop_fe_contra(
  seq: SeqSlice,
  pp_closing_loop: &(usize, usize),
  accessible_pp: &(usize, usize),
  struct_feature_score_sets: &StructFeatureCountSets,
) -> FreeEnergy {
  let accessible_bp = (seq[accessible_pp.0], seq[accessible_pp.1]);
  let fe = if pp_closing_loop.0 + 1 == accessible_pp.0 && pp_closing_loop.1 - 1 == accessible_pp.1 {
    get_stack_fe_contra(
      seq,
      pp_closing_loop,
      accessible_pp,
      struct_feature_score_sets,
    )
  } else if pp_closing_loop.0 + 1 == accessible_pp.0 || pp_closing_loop.1 - 1 == accessible_pp.1 {
    get_bl_fe_contra(
      seq,
      pp_closing_loop,
      accessible_pp,
      struct_feature_score_sets,
    )
  } else {
    get_il_fe_contra(
      seq,
      pp_closing_loop,
      accessible_pp,
      struct_feature_score_sets,
    )
  };
  fe + struct_feature_score_sets.base_pair_count_mat[accessible_bp.0][accessible_bp.1]
}

pub fn get_stack_fe_contra(
  seq: SeqSlice,
  pp_closing_loop: &(usize, usize),
  accessible_pp: &(usize, usize),
  struct_feature_score_sets: &StructFeatureCountSets,
) -> FreeEnergy {
  let bp_closing_loop = (seq[pp_closing_loop.0], seq[pp_closing_loop.1]);
  let accessible_bp = (seq[accessible_pp.0], seq[accessible_pp.1]);
  struct_feature_score_sets.stack_count_mat[bp_closing_loop.0][bp_closing_loop.1][accessible_bp.0]
    [accessible_bp.1]
}

pub fn get_bl_fe_contra(
  seq: SeqSlice,
  pp_closing_loop: &(usize, usize),
  accessible_pp: &(usize, usize),
  struct_feature_score_sets: &StructFeatureCountSets,
) -> FreeEnergy {
  let bl_len = accessible_pp.0 - pp_closing_loop.0 + pp_closing_loop.1 - accessible_pp.1 - 2;
  let fe = if bl_len == 1 {
    struct_feature_score_sets.bulge_loop_0x1_length_counts[if accessible_pp.0
      - pp_closing_loop.0
      - 1
      == 1
    {
      seq[pp_closing_loop.0 + 1]
    } else {
      seq[pp_closing_loop.1 - 1]
    }]
  } else {
    0.
  };
  fe + struct_feature_score_sets.bulge_loop_length_counts_cumulative[bl_len - 1]
    + get_contra_junction_fe_single(seq, pp_closing_loop, struct_feature_score_sets)
    + get_contra_junction_fe_single(
      seq,
      &(accessible_pp.1, accessible_pp.0),
      struct_feature_score_sets,
    )
}

pub fn get_il_fe_contra(
  seq: SeqSlice,
  pp_closing_loop: &(usize, usize),
  accessible_pp: &(usize, usize),
  struct_feature_score_sets: &StructFeatureCountSets,
) -> FreeEnergy {
  let pair_of_nums_of_unpaired_bases = (
    accessible_pp.0 - pp_closing_loop.0 - 1,
    pp_closing_loop.1 - accessible_pp.1 - 1,
  );
  let il_len = pair_of_nums_of_unpaired_bases.0 + pair_of_nums_of_unpaired_bases.1;
  let fe = if pair_of_nums_of_unpaired_bases.0 == pair_of_nums_of_unpaired_bases.1 {
    let fe_3 = if il_len == 2 {
      struct_feature_score_sets.interior_loop_1x1_length_count_mat[seq[pp_closing_loop.0 + 1]]
        [seq[pp_closing_loop.1 - 1]]
    } else {
      0.
    };
    fe_3
      + struct_feature_score_sets.interior_loop_length_counts_symm_cumulative
        [pair_of_nums_of_unpaired_bases.0 - 1]
  } else {
    struct_feature_score_sets.interior_loop_length_counts_asymm_cumulative[get_abs_diff(
      pair_of_nums_of_unpaired_bases.0,
      pair_of_nums_of_unpaired_bases.1,
    ) - 1]
  };
  let fe_2 = if pair_of_nums_of_unpaired_bases.0 <= 4 && pair_of_nums_of_unpaired_bases.1 <= 4 {
    struct_feature_score_sets.interior_loop_length_count_mat_explicit
      [pair_of_nums_of_unpaired_bases.0 - 1][pair_of_nums_of_unpaired_bases.1 - 1]
  } else {
    0.
  };
  fe + fe_2
    + struct_feature_score_sets.interior_loop_length_counts_cumulative[il_len - 2]
    + get_contra_junction_fe_single(seq, pp_closing_loop, struct_feature_score_sets)
    + get_contra_junction_fe_single(
      seq,
      &(accessible_pp.1, accessible_pp.0),
      struct_feature_score_sets,
    )
}

pub fn get_contra_junction_fe_multi(
  seq: SeqSlice,
  pp: &(usize, usize),
  seq_len: usize,
  use_sentinel_nucs: bool,
  struct_feature_score_sets: &StructFeatureCountSets,
) -> FreeEnergy {
  let bp = (seq[pp.0], seq[pp.1]);
  let five_prime_end = if use_sentinel_nucs { 1 } else { 0 };
  let three_prime_end = seq_len - if use_sentinel_nucs { 2 } else { 1 };
  get_contra_helix_closing_fe(&bp, struct_feature_score_sets)
    + if pp.0 < three_prime_end {
      struct_feature_score_sets.left_dangle_count_mat[bp.0][bp.1][seq[pp.0 + 1]]
    } else {
      0.
    }
    + if pp.1 > five_prime_end {
      struct_feature_score_sets.right_dangle_count_mat[bp.0][bp.1][seq[pp.1 - 1]]
    } else {
      0.
    }
}

pub fn get_contra_junction_fe_single(
  seq: SeqSlice,
  pp: &(usize, usize),
  struct_feature_score_sets: &StructFeatureCountSets,
) -> FreeEnergy {
  let bp = (seq[pp.0], seq[pp.1]);
  get_contra_helix_closing_fe(&bp, struct_feature_score_sets)
    + get_contra_terminal_mismatch_fe(
      &bp,
      &(seq[pp.0 + 1], seq[pp.1 - 1]),
      struct_feature_score_sets,
    )
}

pub fn get_contra_helix_closing_fe(
  bp: &BasePair,
  struct_feature_score_sets: &StructFeatureCountSets,
) -> FreeEnergy {
  struct_feature_score_sets.helix_end_count_mat[bp.0][bp.1]
}

pub fn get_contra_terminal_mismatch_fe(
  bp: &BasePair,
  mismatch_bp: &BasePair,
  struct_feature_score_sets: &StructFeatureCountSets,
) -> FreeEnergy {
  struct_feature_score_sets.terminal_mismatch_count_mat[bp.0][bp.1][mismatch_bp.0][mismatch_bp.1]
}

pub fn is_rna_base(base: Base) -> bool {
  match base {
    A => true,
    U => true,
    G => true,
    C => true,
    _ => false,
  }
}

pub fn is_au_or_gu(bp: &BasePair) -> bool {
  *bp == AU || *bp == UA || *bp == GU || *bp == UG
}

pub fn convert<'a>(seq: &'a [u8]) -> Seq {
  let mut new_seq = Seq::new();
  for &c in seq {
    let new_base = match c {
      SMALL_A | BIG_A => A,
      SMALL_C | BIG_C => C,
      SMALL_G | BIG_G => G,
      SMALL_U | BIG_U => U,
      _ => {
        assert!(false);
        U
      }
    };
    new_seq.push(new_base);
  }
  new_seq
}

#[inline]
pub fn logsumexp(sum: &mut FreeEnergy, new_term: FreeEnergy) {
  if !new_term.is_finite() {
    return;
  }
  *sum = if !sum.is_finite() {
    new_term
  } else {
    let max = sum.max(new_term);
    let min = sum.min(new_term);
    let diff = max - min;
    min
      + if diff >= LOGSUMEXP_THRES_UPPER {
        diff
      } else {
        // diff.exp().ln_1p()
        ln_exp_1p(diff)
      }
  };
}

// Approximated (x.exp() + 1).ln() from CONTRAfold, eliminating ln() and exp() (assuming 0 <= x <= LOGSUMEXP_THRES_UPPER)
#[inline]
pub fn ln_exp_1p(x: FreeEnergy) -> FreeEnergy {
  if x < 3.3792499610 {
    if x < 1.6320158198 {
      if x < 0.6615367791 {
        ((-0.0065591595 * x + 0.1276442762) * x + 0.4996554598) * x + 0.6931542306
      } else {
        ((-0.0155157557 * x + 0.1446775699) * x + 0.4882939746) * x + 0.6958092989
      }
    } else if x < 2.4912588184 {
      ((-0.0128909247 * x + 0.1301028251) * x + 0.5150398748) * x + 0.6795585882
    } else {
      ((-0.0072142647 * x + 0.0877540853) * x + 0.6208708362) * x + 0.5909675829
    }
  } else if x < 5.7890710412 {
    if x < 4.4261691294 {
      ((-0.0031455354 * x + 0.0467229449) * x + 0.7592532310) * x + 0.4348794399
    } else {
      ((-0.0010110698 * x + 0.0185943421) * x + 0.8831730747) * x + 0.2523695427
    }
  } else if x < 7.8162726752 {
    ((-0.0001962780 * x + 0.0046084408) * x + 0.9634431978) * x + 0.0983148903
  } else {
    ((-0.0000113994 * x + 0.0003734731) * x + 0.9959107193) * x + 0.0149855051
  }
}

// Approximated x.exp() from CONTRAfold
#[inline]
pub fn expf(x: FreeEnergy) -> FreeEnergy {
  if x < -2.4915033807 {
    if x < -5.8622823336 {
      if x < -9.91152 {
        0.
      } else {
        ((0.0000803850 * x + 0.0021627428) * x + 0.0194708555) * x + 0.0588080014
      }
    } else if x < -3.8396630909 {
      ((0.0013889414 * x + 0.0244676474) * x + 0.1471290604) * x + 0.3042757740
    } else {
      ((0.0072335607 * x + 0.0906002677) * x + 0.3983111356) * x + 0.6245959221
    }
  } else if x < -0.6725053211 {
    if x < -1.4805375919 {
      ((0.0232410351 * x + 0.2085645908) * x + 0.6906367911) * x + 0.8682322329
    } else {
      ((0.0573782771 * x + 0.3580258429) * x + 0.9121133217) * x + 0.9793091728
    }
  } else if x < 0. {
    ((0.1199175927 * x + 0.4815668234) * x + 0.9975991939) * x + 0.9999505077
  } else {
    x.exp()
  }
}

pub fn read_sa_from_clustal_file(clustal_file_path: &Path) -> (Cols, SeqIds) {
  let mut cols = Cols::new();
  let mut seq_ids = SeqIds::new();
  let reader_2_clustal_file = BufReader::new(File::open(clustal_file_path).unwrap());
  let mut seq_pointer = 0;
  let mut pos_pointer = 0;
  let mut are_seq_ids_read = false;
  for (i, string) in reader_2_clustal_file.lines().enumerate() {
    let string = string.unwrap();
    if i == 0 || string.len() == 0 || string.starts_with(" ") {
      if cols.len() > 0 {
        seq_pointer = 0;
        pos_pointer = cols.len();
        are_seq_ids_read = true;
      }
      continue;
    }
    let mut substrings = string.split_whitespace();
    let substring = substrings.next().unwrap();
    if !are_seq_ids_read {
      seq_ids.push(String::from(substring));
    }
    let substring = substrings.next().unwrap();
    if seq_pointer == 0 {
      for sa_char in substring.chars() {
        cols.push(vec![convert_sa_char(sa_char as u8)]);
      }
      seq_pointer += 1;
    } else {
      for (j, sa_char) in substring.chars().enumerate() {
        cols[pos_pointer + j].push(convert_sa_char(sa_char as u8));
      }
    }
  }
  (cols, seq_ids)
}

pub fn read_sa_from_fasta_file(fasta_file_path: &Path) -> (Cols, SeqIds) {
  let mut cols = Cols::new();
  let mut seq_ids = SeqIds::new();
  let reader_2_fasta_file = BufReader::new(File::open(fasta_file_path).unwrap());
  let mut seqs = Vec::<Seq>::new();
  for (i, string) in reader_2_fasta_file.split(b'>').enumerate() {
    let string = String::from_utf8(string.unwrap()).unwrap();
    if i == 0 {
      continue;
    }
    let substrings: Vec<&str> = string.split_whitespace().collect();
    let seq_id = substrings[0];
    seq_ids.push(SeqId::from(seq_id));
    let seq = substrings[1..].join("");
    let seq = seq.chars().map(|x| convert_sa_char(x as u8)).collect();
    seqs.push(seq);
  }
  let align_len = seqs[0].len();
  for i in 0..align_len {
    let col = seqs.iter().map(|x| x[i]).collect();
    cols.push(col);
  }
  (cols, seq_ids)
}

pub fn read_sa_from_stockholm_file(stockholm_file_path: &Path) -> (Cols, SeqIds) {
  let mut cols = Cols::new();
  let mut seq_ids = SeqIds::new();
  let reader_2_stockholm_file = BufReader::new(File::open(stockholm_file_path).unwrap());
  let mut seqs = Vec::<Seq>::new();
  for string in reader_2_stockholm_file.lines() {
    let string = string.unwrap();
    if string.len() == 0 || string.starts_with("#") {
      continue;
    } else if string.starts_with("//") {
      break;
    }
    let substrings: Vec<&str> = string.split_whitespace().collect();
    let seq_id = substrings[0];
    seq_ids.push(SeqId::from(seq_id));
    let seq = substrings[1];
    let seq = seq.chars().map(|x| convert_sa_char(x as u8)).collect();
    seqs.push(seq);
  }
  let align_len = seqs[0].len();
  for i in 0..align_len {
    let col = seqs.iter().map(|x| x[i]).collect();
    cols.push(col);
  }
  (cols, seq_ids)
}

pub fn convert_sa_char(c: u8) -> Base {
  match c {
    SMALL_A | BIG_A => A,
    SMALL_C | BIG_C => C,
    SMALL_G | BIG_G => G,
    SMALL_U | BIG_U => U,
    _ => PSEUDO_BASE,
  }
}