1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
use utils::*;

pub struct SsPartFuncMats {
  pub part_func_mat: PartFuncMat,
  pub part_func_mat_4_rightmost_base_pairings: PartFuncMat,
  pub part_func_mat_4_base_pairings: SparsePartFuncMat,
  pub part_func_mat_4_at_least_1_base_pairings_on_mls: PartFuncMat,
}
pub struct SsMaxFreeEnergyMats {
  pub max_free_energy_mat: FreeEnergyMat,
  pub max_free_energy_mat_4_rightmost_base_pairings: FreeEnergyMat,
  pub max_free_energy_mat_4_base_pairings: SparseFreeEnergyMat,
  pub max_free_energy_mat_4_at_least_1_base_pairings_on_mls: FreeEnergyMat,
}
pub type FreeEnergies = Vec<FreeEnergy>;
pub type FreeEnergyMat = Vec<FreeEnergies>;
pub type SparseFreeEnergyMat = FxHashMap<PosPair, FreeEnergy>;
pub type SparsePartFuncMat = FxHashMap<PosPair, PartFunc>;
pub type SparseProbMat = FxHashMap<PosPair, Prob>;
#[derive(Clone)]
pub struct SsFreeEnergyMats {
  pub hl_fe_mat: SparseFreeEnergyMat,
  pub exp_hl_fe_mat: SparseFreeEnergyMat,
  pub twoloop_fe_4d_mat: FreeEnergy4dMat,
  pub exp_2loop_fe_4d_mat: FreeEnergy4dMat,
}
pub type PosQuadruple = (Pos, Pos, Pos, Pos);
pub type FreeEnergy4dMat = FxHashMap<PosQuadruple, FreeEnergy>;

impl SsPartFuncMats {
  fn new(seq_len: usize) -> SsPartFuncMats {
    let zero_mat = vec![vec![0.; seq_len]; seq_len];
    SsPartFuncMats {
      part_func_mat: vec![vec![1.; seq_len]; seq_len],
      part_func_mat_4_rightmost_base_pairings: zero_mat.clone(),
      part_func_mat_4_base_pairings: SparsePartFuncMat::default(),
      part_func_mat_4_at_least_1_base_pairings_on_mls: zero_mat,
    }
  }
}

impl SsMaxFreeEnergyMats {
  fn new(seq_len: usize) -> SsMaxFreeEnergyMats {
    let ni_mat = vec![vec![NEG_INFINITY; seq_len]; seq_len];
    SsMaxFreeEnergyMats {
      max_free_energy_mat: vec![vec![0.; seq_len]; seq_len],
      max_free_energy_mat_4_rightmost_base_pairings: ni_mat.clone(),
      max_free_energy_mat_4_base_pairings: SparseFreeEnergyMat::default(),
      max_free_energy_mat_4_at_least_1_base_pairings_on_mls: ni_mat,
    }
  }
}

impl SsFreeEnergyMats {
  pub fn new() -> SsFreeEnergyMats {
    let free_energy_mat = SparseFreeEnergyMat::default();
    let free_energy_4d_mat = FreeEnergy4dMat::default();
    SsFreeEnergyMats {
      hl_fe_mat: free_energy_mat.clone(),
      exp_hl_fe_mat: free_energy_mat,
      twoloop_fe_4d_mat: free_energy_4d_mat.clone(),
      exp_2loop_fe_4d_mat: free_energy_4d_mat,
    }
  }
  pub fn sparsify(&mut self, bpp_mat: &SparseProbMat, min_bpp: Prob) {
    self.hl_fe_mat = self.hl_fe_mat.iter().filter(|(pos_pair, _)| {bpp_mat[pos_pair] >= min_bpp}).map(|(&(i, j), &free_energy)| {((i + 1, j + 1), free_energy)}).collect();
    self.exp_hl_fe_mat = self.exp_hl_fe_mat.iter().filter(|(pos_pair, _)| {bpp_mat[pos_pair] >= min_bpp}).map(|(&(i, j), &free_energy)| {((i + 1, j + 1), free_energy)}).collect();
    self.twoloop_fe_4d_mat = self.twoloop_fe_4d_mat.iter().filter(|(&(i, j, k, l), _)| {bpp_mat[&(i, j)] >= min_bpp && bpp_mat[&(k, l)] >= min_bpp}).map(|(&(i, j, k, l), &free_energy)| {((i + 1, j + 1, k + 1, l + 1), free_energy)}).collect();
    self.exp_2loop_fe_4d_mat = self.exp_2loop_fe_4d_mat.iter().filter(|(&(i, j, k, l), _)| {bpp_mat[&(i, j)] >= min_bpp && bpp_mat[&(k, l)] >= min_bpp}).map(|(&(i, j, k, l), &free_energy)| {((i + 1, j + 1, k + 1, l + 1), free_energy)}).collect();
  }
}

pub const CONST_4_INIT_ML_DELTA_FE: FreeEnergy = - INVERSE_TEMPERATURE * 9.3;
pub const COEFFICIENT_4_TERM_OF_NUM_OF_BRANCHING_HELICES_ON_INIT_ML_DELTA_FE: FreeEnergy = - INVERSE_TEMPERATURE * (-0.9);
lazy_static! {
  pub static ref EXP_CONST_4_INIT_ML_DELTA_FE: FreeEnergy = CONST_4_INIT_ML_DELTA_FE.exp();
  pub static ref EXP_COEFFICIENT_4_TERM_OF_NUM_OF_BRANCHING_HELICES_ON_INIT_ML_DELTA_FE: FreeEnergy = COEFFICIENT_4_TERM_OF_NUM_OF_BRANCHING_HELICES_ON_INIT_ML_DELTA_FE.exp();
}

pub fn mccaskill_algo(seq: SeqSlice) -> (SparseProbMat, FreeEnergy, SsFreeEnergyMats) {
  let seq_len = seq.len();
  let mut ss_free_energy_mats = SsFreeEnergyMats::new();
  let max_free_energy = get_max_free_energy(seq, seq_len, &mut ss_free_energy_mats);
  let invert_exp_max_free_energy = 1. / max_free_energy.exp();
  let ss_part_func_mats = get_ss_part_func_mats(seq, seq_len, invert_exp_max_free_energy, &mut ss_free_energy_mats);
  let bpp_mat = get_base_pairing_prob_mat(seq, &ss_part_func_mats, seq_len, invert_exp_max_free_energy);
  (bpp_mat, max_free_energy, ss_free_energy_mats)
}

pub fn get_bpp_and_unpair_prob_mats(seq: SeqSlice) -> (SparseProbMat, Probs, FreeEnergy, SsFreeEnergyMats) {
  let seq_len = seq.len();
  let (bpp_mat, max_free_energy, ss_free_energy_mats) = mccaskill_algo(&seq[..]);
  let mut unpair_prob_mat = vec![1.; seq_len];
  let seq_len = seq_len as Pos;
  for i in 0 .. seq_len {
    let long_i = i as usize;
    let mut sum = 0.;
    for j in 0 .. seq_len {
      if j == i {continue;}
      let pp = if j < i {(j, i)} else {(i, j)};
      if !bpp_mat.contains_key(&pp) {continue;}
      sum += bpp_mat[&pp];
    }
    assert!(0. <= sum && sum <= 1.);
    unpair_prob_mat[long_i] = 1. - sum;
  }
  (bpp_mat, unpair_prob_mat, max_free_energy, ss_free_energy_mats)
}

pub fn get_max_free_energy(seq: SeqSlice, seq_len: usize, ss_free_energy_mats: &mut SsFreeEnergyMats) -> FreeEnergy {
  let mut ss_max_free_energy_mats = SsMaxFreeEnergyMats::new(seq_len);
  let seq_len = seq_len as Pos;
  for sub_seq_len in MIN_SPAN_OF_INDEX_PAIR_CLOSING_HL as Pos .. seq_len + 1 {
    for i in 0 .. seq_len - sub_seq_len + 1 {
      let j = i + sub_seq_len - 1;
      let (long_i, long_j) = (i as usize, j as usize);
      let pp_closing_loop = (i, j);
      let long_pp_closing_loop = (long_i, long_j);
      let bp_closing_loop = (seq[long_i], seq[long_j]);
      let mut max_free_energy;
      if pp_closing_loop.1 - pp_closing_loop.0 + 1 >= MIN_SPAN_OF_INDEX_PAIR_CLOSING_HL as Pos && is_canonical(&bp_closing_loop) {
        max_free_energy = get_hl_fe(seq, &long_pp_closing_loop);
        ss_free_energy_mats.hl_fe_mat.insert(pp_closing_loop, max_free_energy);
        for k in i + 1 .. j - 1 {
          let long_k = k as usize;
          for l in k + 1 .. j {
            let long_l = l as usize;
            if long_j - long_l - 1 + long_k - long_i - 1 > MAX_2_LOOP_LEN {continue;}
            let accessible_pp = (k, l);
            let long_accessible_pp = (long_k, long_l);
            if !ss_max_free_energy_mats.max_free_energy_mat_4_base_pairings.contains_key(&accessible_pp) {continue;}
            let ss_max_free_energy_4_base_pairing = ss_max_free_energy_mats.max_free_energy_mat_4_base_pairings[&accessible_pp];
            let twoloop_free_energy = get_2_loop_fe(seq, &long_pp_closing_loop, &long_accessible_pp);
            ss_free_energy_mats.twoloop_fe_4d_mat.insert((i, j, k, l), twoloop_free_energy);
            let twoloop_free_energy = ss_max_free_energy_4_base_pairing + twoloop_free_energy;
            if twoloop_free_energy > max_free_energy {max_free_energy = twoloop_free_energy};
          }
        }
        let invert_bp_closing_loop = invert_bp(&bp_closing_loop);
        let invert_stacking_bp = invert_bp(&(seq[long_i + 1], seq[long_j - 1]));
        for k in long_i + 1 .. long_j {
          let ml_free_energy = ss_max_free_energy_mats.max_free_energy_mat_4_at_least_1_base_pairings_on_mls[long_i + 1][k - 1] + ss_max_free_energy_mats.max_free_energy_mat_4_rightmost_base_pairings[k][long_j - 1] + CONST_4_INIT_ML_DELTA_FE + COEFFICIENT_4_TERM_OF_NUM_OF_BRANCHING_HELICES_ON_INIT_ML_DELTA_FE + ML_TM_DELTA_FES[invert_bp_closing_loop.0][invert_bp_closing_loop.1][invert_stacking_bp.0][invert_stacking_bp.1] + if is_au_or_gu(&bp_closing_loop) {HELIX_AU_OR_GU_END_PENALTY_DELTA_FE} else {0.};
          if ml_free_energy > max_free_energy {max_free_energy = ml_free_energy};
        }
        ss_max_free_energy_mats.max_free_energy_mat_4_base_pairings.insert(pp_closing_loop, max_free_energy);
      }
      max_free_energy = NEG_INFINITY;
      for k in i + 1 .. j + 1 {
        let long_k = k as usize;
        let accessible_pp = (i, k);
        let accessible_bp = (seq[long_i], seq[long_k]);
        if !ss_max_free_energy_mats.max_free_energy_mat_4_base_pairings.contains_key(&accessible_pp) {continue;}
        let ss_max_free_energy_4_bp = ss_max_free_energy_mats.max_free_energy_mat_4_base_pairings[&accessible_pp];
        let free_energy_4_rightmost_base_pairing = ss_max_free_energy_4_bp + (if i > 0 && k < seq_len - 1 {
          ML_TM_DELTA_FES[accessible_bp.0][accessible_bp.1][seq[long_i - 1]][seq[long_k + 1]]
        } else if i > 0 {
          FIVE_PRIME_DE_DELTA_FES[accessible_bp.0][accessible_bp.1][seq[long_i - 1]]
        } else if k < seq_len - 1 {
          THREE_PRIME_DE_DELTA_FES[accessible_bp.0][accessible_bp.1][seq[long_k + 1]]
        } else {
          0.
        } + if is_au_or_gu(&accessible_bp) {HELIX_AU_OR_GU_END_PENALTY_DELTA_FE} else {0.});
        if free_energy_4_rightmost_base_pairing > max_free_energy {max_free_energy = free_energy_4_rightmost_base_pairing};
      }
      ss_max_free_energy_mats.max_free_energy_mat_4_rightmost_base_pairings[long_i][long_j] = max_free_energy;
      max_free_energy = 0.;
      for k in long_i .. long_j {
        let ss_max_free_energy_4_rightmost_base_pairings = ss_max_free_energy_mats.max_free_energy_mat_4_rightmost_base_pairings[k][long_j];
        if ss_max_free_energy_4_rightmost_base_pairings.is_finite() {
          let free_energy = if i == 0 && k == 0 {0.} else {ss_max_free_energy_mats.max_free_energy_mat[long_i][k - 1]} + ss_max_free_energy_4_rightmost_base_pairings;
        if free_energy > max_free_energy {max_free_energy = free_energy};
        }
      }
      ss_max_free_energy_mats.max_free_energy_mat[long_i][long_j] = max_free_energy;
      max_free_energy = ss_max_free_energy_mats.max_free_energy_mat_4_rightmost_base_pairings[long_i][long_j] + COEFFICIENT_4_TERM_OF_NUM_OF_BRANCHING_HELICES_ON_INIT_ML_DELTA_FE;
      for k in long_i + 1 .. long_j {
        let ss_max_free_energy_4_rightmost_base_pairings = ss_max_free_energy_mats.max_free_energy_mat_4_rightmost_base_pairings[k][long_j];
        let free_energy_4_at_least_1_base_pairings_on_mls = ss_max_free_energy_4_rightmost_base_pairings + COEFFICIENT_4_TERM_OF_NUM_OF_BRANCHING_HELICES_ON_INIT_ML_DELTA_FE;
        if free_energy_4_at_least_1_base_pairings_on_mls > max_free_energy {max_free_energy = free_energy_4_at_least_1_base_pairings_on_mls};
        let free_energy_4_at_least_1_base_pairings_on_mls = ss_max_free_energy_mats.max_free_energy_mat_4_at_least_1_base_pairings_on_mls[long_i][k - 1] + ss_max_free_energy_4_rightmost_base_pairings + COEFFICIENT_4_TERM_OF_NUM_OF_BRANCHING_HELICES_ON_INIT_ML_DELTA_FE;
        if free_energy_4_at_least_1_base_pairings_on_mls > max_free_energy {max_free_energy = free_energy_4_at_least_1_base_pairings_on_mls};
      }
      ss_max_free_energy_mats.max_free_energy_mat_4_at_least_1_base_pairings_on_mls[long_i][long_j] = max_free_energy;
    }
  }
  ss_max_free_energy_mats.max_free_energy_mat[0][seq_len as usize - 1]
}

pub fn get_ss_part_func_mats(seq: SeqSlice, seq_len: usize, invert_exp_max_free_energy: FreeEnergy, ss_free_energy_mats: &mut SsFreeEnergyMats) -> SsPartFuncMats {
  let mut ss_part_func_mats = SsPartFuncMats::new(seq_len);
  let seq_len = seq_len as Pos;
  for sub_seq_len in MIN_SPAN_OF_INDEX_PAIR_CLOSING_HL as Pos .. seq_len + 1 {
    for i in 0 .. seq_len - sub_seq_len + 1 {
      let j = i + sub_seq_len - 1;
      let (long_i, long_j) = (i as usize, j as usize);
      let pp_closing_loop = (i, j);
      let long_pp_closing_loop = (long_i, long_j);
      let bp_closing_loop = (seq[long_i], seq[long_j]);
      let mut sum = 0.;
      if long_pp_closing_loop.1 - long_pp_closing_loop.0 + 1 >= MIN_SPAN_OF_INDEX_PAIR_CLOSING_HL && is_canonical(&bp_closing_loop) {
        let exp_hl_fe = get_exp_hl_fe(seq, &long_pp_closing_loop);
        ss_free_energy_mats.exp_hl_fe_mat.insert(pp_closing_loop, exp_hl_fe);
        sum += exp_hl_fe * invert_exp_max_free_energy;
        for k in i + 1 .. j - 1 {
          let long_k = k as usize;
          for l in k + 1 .. j {
            let long_l = l as usize;
            if long_j - long_l - 1 + long_k - long_i - 1 > MAX_2_LOOP_LEN {continue;}
            let accessible_pp = (k, l);
            let long_accessible_pp = (long_k, long_l);
            if !ss_part_func_mats.part_func_mat_4_base_pairings.contains_key(&accessible_pp) {continue;}
            let ss_part_func_4_base_pairing = ss_part_func_mats.part_func_mat_4_base_pairings[&accessible_pp];
            let exp_2loop_free_energy = get_exp_2_loop_fe(seq, &long_pp_closing_loop, &long_accessible_pp);
            ss_free_energy_mats.exp_2loop_fe_4d_mat.insert((i, j, k, l), exp_2loop_free_energy);
            sum += ss_part_func_4_base_pairing * exp_2loop_free_energy;
          }
        }
        let invert_bp_closing_loop = invert_bp(&bp_closing_loop);
        let invert_stacking_bp = invert_bp(&(seq[long_i + 1], seq[long_j - 1]));
        let exp_ml_tm_delta_fe = EXP_ML_TM_DELTA_FES[invert_bp_closing_loop.0][invert_bp_closing_loop.1][invert_stacking_bp.0][invert_stacking_bp.1];
        for k in long_i + 1 .. long_j {
          sum += ss_part_func_mats.part_func_mat_4_at_least_1_base_pairings_on_mls[long_i + 1][k - 1] * ss_part_func_mats.part_func_mat_4_rightmost_base_pairings[k][long_j - 1] / invert_exp_max_free_energy * (*EXP_CONST_4_INIT_ML_DELTA_FE) * (*EXP_COEFFICIENT_4_TERM_OF_NUM_OF_BRANCHING_HELICES_ON_INIT_ML_DELTA_FE) * exp_ml_tm_delta_fe * if is_au_or_gu(&bp_closing_loop) {*EXP_HELIX_AU_OR_GU_END_PENALTY_DELTA_FE} else {1.};
        }
        ss_part_func_mats.part_func_mat_4_base_pairings.insert(pp_closing_loop, sum);
      }
      sum = 0.;
      for k in i + 1 .. j + 1 {
        let long_k = k as usize;
        let accessible_pp = (i, k);
        let accessible_bp = (seq[long_i], seq[long_k]);
        if !ss_part_func_mats.part_func_mat_4_base_pairings.contains_key(&accessible_pp) {continue;}
        let ss_part_func_4_bp = ss_part_func_mats.part_func_mat_4_base_pairings[&accessible_pp];
        sum += ss_part_func_4_bp * (if i > 0 && k < seq_len - 1 {
          EXP_ML_TM_DELTA_FES[accessible_bp.0][accessible_bp.1][seq[long_i - 1]][seq[long_k + 1]]
        } else if i > 0 {
          EXP_FIVE_PRIME_DE_DELTA_FES[accessible_bp.0][accessible_bp.1][seq[long_i - 1]]
        } else if k < seq_len - 1 {
          EXP_THREE_PRIME_DE_DELTA_FES[accessible_bp.0][accessible_bp.1][seq[long_k + 1]]
        } else {
          1.
        } * if is_au_or_gu(&accessible_bp) {*EXP_HELIX_AU_OR_GU_END_PENALTY_DELTA_FE} else {1.});
      }
      ss_part_func_mats.part_func_mat_4_rightmost_base_pairings[long_i][long_j] = sum;
      sum = invert_exp_max_free_energy;
      for k in long_i .. long_j {
        let ss_part_func_4_rightmost_base_pairings = ss_part_func_mats.part_func_mat_4_rightmost_base_pairings[k][long_j];
        if ss_part_func_4_rightmost_base_pairings == 0. {
          continue;
        }
        let part_func = if i == 0 && k == 0 {1.} else {ss_part_func_mats.part_func_mat[long_i][k - 1]};
        sum += part_func * ss_part_func_4_rightmost_base_pairings / if part_func == 1. {1.} else {invert_exp_max_free_energy};
      }
      ss_part_func_mats.part_func_mat[long_i][long_j] = sum;
      sum = ss_part_func_mats.part_func_mat_4_rightmost_base_pairings[long_i][long_j] * (*EXP_COEFFICIENT_4_TERM_OF_NUM_OF_BRANCHING_HELICES_ON_INIT_ML_DELTA_FE);
      for k in long_i + 1 .. long_j {
        let ss_part_func_4_rightmost_base_pairings = ss_part_func_mats.part_func_mat_4_rightmost_base_pairings[k][long_j];
        sum += ss_part_func_4_rightmost_base_pairings * (*EXP_COEFFICIENT_4_TERM_OF_NUM_OF_BRANCHING_HELICES_ON_INIT_ML_DELTA_FE);
        sum += ss_part_func_mats.part_func_mat_4_at_least_1_base_pairings_on_mls[long_i][k - 1] * ss_part_func_4_rightmost_base_pairings / invert_exp_max_free_energy * (*EXP_COEFFICIENT_4_TERM_OF_NUM_OF_BRANCHING_HELICES_ON_INIT_ML_DELTA_FE);
      }
      ss_part_func_mats.part_func_mat_4_at_least_1_base_pairings_on_mls[long_i][long_j] = sum;
    }
  }
  ss_part_func_mats
}

fn get_base_pairing_prob_mat(seq: SeqSlice, ss_part_func_mats: &SsPartFuncMats, seq_len: usize, invert_exp_max_free_energy: FreeEnergy) -> SparseProbMat {
  let ss_part_func = ss_part_func_mats.part_func_mat[0][seq_len - 1];
  let mut bpp_mat = SparseProbMat::default();
  let mut prob_mat_4_mls_1 = vec![vec![0.; seq_len]; seq_len];
  let mut prob_mat_4_mls_2 = prob_mat_4_mls_1.clone();
  let short_seq_len = seq_len as Pos;
  for sub_seq_len in (MIN_SPAN_OF_INDEX_PAIR_CLOSING_HL as Pos .. short_seq_len + 1).rev() {
    for i in 0 .. short_seq_len - sub_seq_len + 1 {
      let j = i + sub_seq_len - 1;
      let (long_i, long_j) = (i as usize, j as usize);
      let mut sum_1 = 0.;
      let mut sum_2 = sum_1;
      for k in j + 1 .. short_seq_len {
        let long_k = k as usize;
        let pp_closing_loop = (i, k);
        if !ss_part_func_mats.part_func_mat_4_base_pairings.contains_key(&pp_closing_loop) {continue;}
        let ss_part_func_4_base_pairing = ss_part_func_mats.part_func_mat_4_base_pairings[&pp_closing_loop];
        let bpp = bpp_mat[&pp_closing_loop];
        let bp_closing_loop = (seq[long_i], seq[long_k]);
        let invert_bp_closing_loop = invert_bp(&bp_closing_loop);
        let invert_stacking_bp = invert_bp(&(seq[long_i + 1], seq[long_k - 1]));
        let exp_ml_tm_delta_fe = EXP_ML_TM_DELTA_FES[invert_bp_closing_loop.0][invert_bp_closing_loop.1][invert_stacking_bp.0][invert_stacking_bp.1];
        let coefficient = bpp * exp_ml_tm_delta_fe * if is_au_or_gu(&bp_closing_loop) {*EXP_HELIX_AU_OR_GU_END_PENALTY_DELTA_FE} else {1.} / ss_part_func_4_base_pairing;
        sum_1 += coefficient * ss_part_func_mats.part_func_mat_4_at_least_1_base_pairings_on_mls[long_j + 1][long_k - 1];
        sum_2 += coefficient;
      }
      prob_mat_4_mls_1[long_i][long_j] = sum_1;
      prob_mat_4_mls_2[long_i][long_j] = sum_2;
      let accessible_pp = (i, j);
      let long_accessible_pp = (long_i, long_j);
      let accessible_bp = (seq[long_i], seq[long_j]);
      if !ss_part_func_mats.part_func_mat_4_base_pairings.contains_key(&accessible_pp) {continue;}
      let ss_part_func_4_base_pairing_1 = ss_part_func_mats.part_func_mat_4_base_pairings[&accessible_pp];
      let part_func_pair = (
        if accessible_pp.0 < 1 {1.} else {ss_part_func_mats.part_func_mat[0][long_i - 1]},
        if accessible_pp.1 > short_seq_len - 2 {1.} else {ss_part_func_mats.part_func_mat[long_j + 1][seq_len - 1]},
      );
      let mut sum = part_func_pair.0 * ss_part_func_4_base_pairing_1 / if part_func_pair.0 == 1. {1.} else {invert_exp_max_free_energy} * part_func_pair.1 / if part_func_pair.1 == 1. {1.} else {invert_exp_max_free_energy} / ss_part_func * (if i > 0 && j < short_seq_len - 1 {
        EXP_ML_TM_DELTA_FES[accessible_bp.0][accessible_bp.1][seq[long_i - 1]][seq[long_j + 1]]
      } else if i > 0 {
        EXP_FIVE_PRIME_DE_DELTA_FES[accessible_bp.0][accessible_bp.1][seq[long_i - 1]]
      } else if j < short_seq_len - 1 {
        EXP_THREE_PRIME_DE_DELTA_FES[accessible_bp.0][accessible_bp.1][seq[long_j + 1]]
      } else {
        1.
      } * if is_au_or_gu(&accessible_bp) {*EXP_HELIX_AU_OR_GU_END_PENALTY_DELTA_FE} else {1.});
      for k in 0 .. i {
        let long_k = k as usize;
        for l in j + 1 .. short_seq_len {
          let long_l = l as usize;
          if long_l - long_j - 1 + long_i - long_k - 1 > MAX_2_LOOP_LEN {continue;}
          let pp_closing_loop = (k, l);
          let long_pp_closing_loop = (long_k, long_l);
          if !ss_part_func_mats.part_func_mat_4_base_pairings.contains_key(&pp_closing_loop) {continue;}
          let ss_part_func_4_base_pairing_2 = ss_part_func_mats.part_func_mat_4_base_pairings[&pp_closing_loop];
          sum += bpp_mat[&pp_closing_loop] * ss_part_func_4_base_pairing_1 / ss_part_func_4_base_pairing_2 * get_exp_2_loop_fe(seq, &long_pp_closing_loop, &long_accessible_pp) as FreeEnergy;
        }
      }
      let coefficient = ss_part_func_4_base_pairing_1 * (*EXP_CONST_4_INIT_ML_DELTA_FE) * (*EXP_COEFFICIENT_4_TERM_OF_NUM_OF_BRANCHING_HELICES_ON_INIT_ML_DELTA_FE) * if i > 0 && j < short_seq_len - 1 {
        EXP_ML_TM_DELTA_FES[accessible_bp.0][accessible_bp.1][seq[long_i - 1]][seq[long_j + 1]]
      } else if i > 0 {
        EXP_FIVE_PRIME_DE_DELTA_FES[accessible_bp.0][accessible_bp.1][seq[long_i - 1]]
      } else if j < short_seq_len - 1 {
        EXP_THREE_PRIME_DE_DELTA_FES[accessible_bp.0][accessible_bp.1][seq[long_j + 1]]
      } else {
        1.
      } * if is_au_or_gu(&accessible_bp) {*EXP_HELIX_AU_OR_GU_END_PENALTY_DELTA_FE} else {1.};
      for k in 0 .. long_i {
        let ss_part_func_4_at_least_1_base_pairings_on_mls = ss_part_func_mats.part_func_mat_4_at_least_1_base_pairings_on_mls[k + 1][long_i - 1];
        sum += coefficient * prob_mat_4_mls_2[k][long_j] * ss_part_func_4_at_least_1_base_pairings_on_mls / invert_exp_max_free_energy;
        let prob_4_mls = prob_mat_4_mls_1[k][long_j];
        sum += coefficient * prob_4_mls / invert_exp_max_free_energy;
        sum += coefficient * prob_4_mls / invert_exp_max_free_energy * ss_part_func_4_at_least_1_base_pairings_on_mls / invert_exp_max_free_energy;
      }
      assert!(0. <= sum && sum <= 1.);
      bpp_mat.insert(accessible_pp, sum);
    }
  }
  bpp_mat
}

pub fn logsumexp(sum: &mut FreeEnergy, new_term: FreeEnergy) {
  *sum = if !sum.is_finite() {
   new_term
  } else {
    let max = sum.max(new_term);
    max + ((if *sum == max {new_term - max} else {*sum - max}).exp() + 1.).ln()
  };
}