risc0_zkvm/receipt/merkle.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
// Copyright 2024 RISC Zero, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Minimal Merkle tree implementation used in the recursion system for
//! committing to a group of control IDs.
use alloc::vec::Vec;
use anyhow::{ensure, Result};
use borsh::{BorshDeserialize, BorshSerialize};
use risc0_core::field::baby_bear::BabyBear;
use risc0_zkp::core::{digest::Digest, hash::HashFn};
use serde::{Deserialize, Serialize};
/// Depth of the Merkle tree to use for encoding the set of allowed control IDs.
// NOTE: Changing this constant must be coordinated with the circuit. In order
// to avoid needing to change the circuit later, this is set to 8 which allows
// for enough control IDs to be encoded that we are unlikely to need more.
pub const ALLOWED_CODE_MERKLE_DEPTH: usize = 8;
/// Merkle tree implementation used in the recursion system to commit to a set
/// of recursion programs, and to verify the inclusion of a given program in the
/// set.
#[non_exhaustive]
pub struct MerkleGroup {
/// Depth of the Merkle tree.
pub depth: u32,
/// Ordered list of Merkle tree leaves, as Digests. It is expected that
/// these will be the control IDs for the committed set of recursion
/// programs.
pub leaves: Vec<Digest>,
}
/// An inclusion proof for the [MerkleGroup]. Used to verify inclusion of a
/// given recursion program in the committed set.
#[non_exhaustive]
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq, BorshSerialize, BorshDeserialize)]
pub struct MerkleProof {
/// Index of the leaf for which inclusion is being proven.
pub index: u32,
/// Sibling digests on the path from the root to the leaf.
/// Does not include the root of the leaf.
pub digests: Vec<Digest>,
}
impl MerkleGroup {
/// Create a new [MerkleGroup] from the given leaves.
/// Will fail if too many leaves are given for the default depth.
pub fn new(leaves: Vec<Digest>) -> Result<Self> {
let max_len = 1 << ALLOWED_CODE_MERKLE_DEPTH;
ensure!(
leaves.len() < max_len,
"a maximum of {max_len} leaves can be added to a MerkleGroup"
);
Ok(Self {
depth: ALLOWED_CODE_MERKLE_DEPTH as u32,
leaves,
})
}
/// Calculate the root of the [MerkleGroup].
pub fn calc_root(&self, hashfn: &dyn HashFn<BabyBear>) -> Digest {
self.calc_range_root(0, 1 << self.depth, hashfn)
}
fn leaf_or_empty(&self, index: u32) -> &Digest {
self.leaves.get(index as usize).unwrap_or(&Digest::ZERO)
}
fn calc_range_root(&self, start: u32, end: u32, hashfn: &dyn HashFn<BabyBear>) -> Digest {
assert!(start < end);
let res = if start + 1 == end {
*self.leaf_or_empty(start)
} else {
let mid = (start + end) / 2;
assert_eq!(mid - start, end - mid);
let left = self.calc_range_root(start, mid, hashfn);
let right = self.calc_range_root(mid, end, hashfn);
*hashfn.hash_pair(&left, &right)
};
res
}
/// Calculate and return a [MerkleProof] for the given leaf.
/// Will return an error if the given leaf is not in the tree.
#[cfg(feature = "prove")]
pub fn get_proof(
&self,
control_id: &Digest,
hashfn: &dyn HashFn<BabyBear>,
) -> Result<MerkleProof> {
let Some(index) = self.leaves.iter().position(|elem| elem == control_id) else {
anyhow::bail!("Unable to find {control_id:?} in merkle group");
};
Ok(self.get_proof_by_index(index as u32, hashfn))
}
/// Calculate and return a [MerkleProof] for the given leaf.
/// Will panic if the given index is out of the range of leaves.
#[cfg(feature = "prove")]
pub fn get_proof_by_index(&self, index: u32, hashfn: &dyn HashFn<BabyBear>) -> MerkleProof {
let mut digests: Vec<Digest> = Vec::with_capacity(self.depth as usize);
let mut cur: Digest = self.leaves[index as usize];
let mut cur_index = index;
for i in 0..self.depth {
let sibling_start = (cur_index ^ 1) << i;
let sibling_end = sibling_start + (1 << i);
let sibling = self.calc_range_root(sibling_start, sibling_end, hashfn);
cur = if cur_index & 1 == 0 {
*hashfn.hash_pair(&cur, &sibling)
} else {
*hashfn.hash_pair(&sibling, &cur)
};
digests.push(sibling);
cur_index >>= 1;
}
MerkleProof { digests, index }
}
}
impl MerkleProof {
/// Verify the Merkle inclusion proof against the given leaf and root.
pub fn verify(
&self,
leaf: &Digest,
root: &Digest,
hashfn: &dyn HashFn<BabyBear>,
) -> Result<()> {
ensure!(
self.root(leaf, hashfn) == *root,
"merkle proof verify failed"
);
Ok(())
}
/// Calculate the root of this branch by iteratively hashing, starting from the leaf.
pub fn root(&self, leaf: &Digest, hashfn: &dyn HashFn<BabyBear>) -> Digest {
let mut cur = *leaf;
let mut cur_index = self.index;
for sibling in &self.digests {
cur = if cur_index & 1 == 0 {
*hashfn.hash_pair(&cur, sibling)
} else {
*hashfn.hash_pair(sibling, &cur)
};
cur_index >>= 1;
}
cur
}
}
#[cfg(test)]
#[cfg(feature = "prove")]
mod tests {
use risc0_zkp::core::hash::poseidon2::Poseidon2HashSuite;
use super::*;
fn shared_levels(a: &MerkleProof, b: &MerkleProof) -> usize {
a.digests
.iter()
.rev()
.zip(b.digests.iter().rev())
.position(|(a_elem, b_elem)| a_elem != b_elem)
.unwrap_or(std::cmp::min(a.digests.len(), b.digests.len()))
}
#[test]
fn basics() {
let digest1 = Digest::new([1, 2, 3, 4, 5, 6, 7, 8]);
let digest2 = Digest::new([9, 10, 11, 12, 13, 14, 15, 16]);
let digest3 = Digest::new([17, 18, 19, 20, 21, 22, 23, 24]);
let suite = Poseidon2HashSuite::new_suite();
let hashfn = suite.hashfn.as_ref();
let grp = MerkleGroup {
depth: 4,
leaves: Vec::from([digest1, digest2, digest3]),
};
let root = grp.calc_root(hashfn);
tracing::trace!("Root: {root:?}");
let proof1 = grp.get_proof_by_index(0, hashfn);
tracing::trace!("Proof1: {proof1:?}");
let proof2 = grp.get_proof_by_index(1, hashfn);
tracing::trace!("Proof2: {proof2:?}");
let proof3 = grp.get_proof_by_index(2, hashfn);
tracing::trace!("Proof3: {proof3:?}");
proof1.verify(&digest1, &root, hashfn).unwrap();
proof1.verify(&digest1, &root, hashfn).unwrap();
proof1.verify(&digest1, &root, hashfn).unwrap();
// Digest1 and digest2 should share 3 levels of proof, whereas proof2 and proof3
// should only share 2
assert_eq!(shared_levels(&proof1, &proof2), 3);
assert_eq!(shared_levels(&proof2, &proof3), 2);
assert_eq!(shared_levels(&proof1, &proof3), 2);
}
}