1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
// Copyright 2024 RISC Zero, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#[cfg(target_os = "zkvm")]
use core::arch::asm;
use core::{cmp::min, ffi::CStr, ptr::null_mut, str::Utf8Error};
use crate::WORD_SIZE;
pub mod ecall {
pub const HALT: u32 = 0;
pub const INPUT: u32 = 1;
pub const SOFTWARE: u32 = 2;
pub const SHA: u32 = 3;
pub const BIGINT: u32 = 4;
}
pub mod halt {
pub const TERMINATE: u32 = 0;
pub const PAUSE: u32 = 1;
pub const SPLIT: u32 = 2;
}
pub mod reg_abi {
pub const REG_ZERO: usize = 0; // zero constant
pub const REG_RA: usize = 1; // return address
pub const REG_SP: usize = 2; // stack pointer
pub const REG_GP: usize = 3; // global pointer
pub const REG_TP: usize = 4; // thread pointer
pub const REG_T0: usize = 5; // temporary
pub const REG_T1: usize = 6; // temporary
pub const REG_T2: usize = 7; // temporary
pub const REG_S0: usize = 8; // saved register
pub const REG_FP: usize = 8; // frame pointer
pub const REG_S1: usize = 9; // saved register
pub const REG_A0: usize = 10; // fn arg / return value
pub const REG_A1: usize = 11; // fn arg / return value
pub const REG_A2: usize = 12; // fn arg
pub const REG_A3: usize = 13; // fn arg
pub const REG_A4: usize = 14; // fn arg
pub const REG_A5: usize = 15; // fn arg
pub const REG_A6: usize = 16; // fn arg
pub const REG_A7: usize = 17; // fn arg
pub const REG_S2: usize = 18; // saved register
pub const REG_S3: usize = 19; // saved register
pub const REG_S4: usize = 20; // saved register
pub const REG_S5: usize = 21; // saved register
pub const REG_S6: usize = 22; // saved register
pub const REG_S7: usize = 23; // saved register
pub const REG_S8: usize = 24; // saved register
pub const REG_S9: usize = 25; // saved register
pub const REG_S10: usize = 26; // saved register
pub const REG_S11: usize = 27; // saved register
pub const REG_T3: usize = 28; // temporary
pub const REG_T4: usize = 29; // temporary
pub const REG_T5: usize = 30; // temporary
pub const REG_T6: usize = 31; // temporary
pub const REG_MAX: usize = 32; // maximum number of registers
}
pub const DIGEST_WORDS: usize = 8;
pub const DIGEST_BYTES: usize = WORD_SIZE * DIGEST_WORDS;
/// Number of words in each cycle received using the SOFTWARE ecall
pub const IO_CHUNK_WORDS: usize = 4;
// Limit syscall buffers so that the Executor doesn't get into an infinite
// split situation.
pub const MAX_BUF_BYTES: usize = 4 * 1024;
pub const MAX_BUF_WORDS: usize = MAX_BUF_BYTES / WORD_SIZE;
pub const MAX_SHA_COMPRESS_BLOCKS: usize = 1000;
pub mod bigint {
pub const OP_MULTIPLY: u32 = 0;
/// BigInt width, in bits, handled by the BigInt accelerator circuit.
pub const WIDTH_BITS: usize = 256;
/// BigInt width, in bytes, handled by the BigInt accelerator circuit.
pub const WIDTH_BYTES: usize = WIDTH_BITS / 8;
/// BigInt width, in words, handled by the BigInt accelerator circuit.
pub const WIDTH_WORDS: usize = WIDTH_BYTES / crate::WORD_SIZE;
}
/// A UTF-8 NUL-terminated name of a syscall with static lifetime.
#[derive(Clone, Copy, Debug)]
#[repr(transparent)]
pub struct SyscallName(*const u8);
/// Construct a SyscallName declaration at compile time.
///
/// ```rust
/// use risc0_zkvm_platform::declare_syscall;
///
/// declare_syscall!(SYS_MY_SYSTEM_CALL);
/// ```
#[macro_export]
macro_rules! declare_syscall {
(
$(#[$meta:meta])*
$vis:vis $name:ident
) => {
// Go through `CStr` to avoid `unsafe` in the caller.
$(#[$meta])*
$vis const $name: $crate::syscall::SyscallName = match ::core::ffi::CStr::from_bytes_until_nul(
concat!(module_path!(), "::", stringify!($name), "\0").as_bytes(),
) {
Ok(c_str) => match $crate::syscall::SyscallName::from_c_str(c_str) {
Ok(name) => name,
Err(_) => unreachable!(),
},
Err(_) => unreachable!(),
};
};
}
pub mod nr {
declare_syscall!(pub SYS_ARGC);
declare_syscall!(pub SYS_ARGV);
declare_syscall!(pub SYS_CYCLE_COUNT);
declare_syscall!(pub SYS_GETENV);
declare_syscall!(pub SYS_LOG);
declare_syscall!(pub SYS_PANIC);
declare_syscall!(pub SYS_RANDOM);
declare_syscall!(pub SYS_READ);
declare_syscall!(pub SYS_VERIFY_INTEGRITY);
declare_syscall!(pub SYS_WRITE);
}
impl SyscallName {
/// Converts a static C string to a system call name, if it is UTF-8.
#[inline]
pub const fn from_c_str(c_str: &'static CStr) -> Result<Self, Utf8Error> {
match c_str.to_str() {
Ok(_) => Ok(unsafe { Self::from_bytes_with_nul(c_str.as_ptr().cast()) }),
Err(error) => Err(error),
}
}
/// Converts a raw UTF-8 C string pointer to a system call name.
///
/// # Safety
///
/// The pointer must reference a static null-terminated UTF-8 string.
pub const unsafe fn from_bytes_with_nul(ptr: *const u8) -> Self {
Self(ptr)
}
pub fn as_ptr(&self) -> *const u8 {
self.0
}
pub fn as_str(&self) -> &str {
core::str::from_utf8(unsafe { core::ffi::CStr::from_ptr(self.as_ptr().cast()).to_bytes() })
.unwrap()
}
}
impl AsRef<str> for SyscallName {
fn as_ref(&self) -> &str {
self.as_str()
}
}
/// Returned registers (a0, a1) from a syscall invocation.
#[repr(C)]
pub struct Return(pub u32, pub u32);
macro_rules! impl_syscall {
($func_name:ident
// Ugh, unfortunately we can't make this a regular macro list since the asm macro
// doesn't expand register names so in($register) doesn't work.
$(, $a0:ident
$(, $a1:ident
$(, $a2: ident
$(, $a3: ident
$(, $a4: ident
)?
)?
)?
)?
)?) => {
/// Invoke a raw system call
///
/// # Safety
///
/// `from_host` must be aligned and dereferenceable.
#[cfg_attr(feature = "export-syscalls", no_mangle)]
pub unsafe extern "C" fn $func_name(syscall: SyscallName,
from_host: *mut u32,
from_host_words: usize
$(,$a0: u32
$(,$a1: u32
$(,$a2: u32
$(,$a3: u32
$(,$a4: u32
)?
)?
)?
)?
)?
) -> Return {
#[cfg(target_os = "zkvm")] {
let a0: u32;
let a1: u32;
::core::arch::asm!(
"ecall",
in("t0") $crate::syscall::ecall::SOFTWARE,
inout("a0") from_host => a0,
inout("a1") from_host_words => a1,
in("a2") syscall.as_ptr()
$(,in("a3") $a0
$(,in("a4") $a1
$(,in("a5") $a2
$(,in("a6") $a3
$(,in("a7") $a4
)?
)?
)?
)?
)?);
Return(a0, a1)
}
#[cfg(not(target_os = "zkvm"))]
unimplemented!()
}
}
}
impl_syscall!(syscall_0);
impl_syscall!(syscall_1, a3);
impl_syscall!(syscall_2, a3, a4);
impl_syscall!(syscall_3, a3, a4, a5);
impl_syscall!(syscall_4, a3, a4, a5, a6);
impl_syscall!(syscall_5, a3, a4, a5, a6, a7);
fn ecall_1(t0: u32, a0: u32, a1: u32) {
#[cfg(target_os = "zkvm")]
unsafe {
asm!(
"ecall",
in("t0") t0,
in("a0") a0,
in("a1") a1,
)
};
#[cfg(not(target_os = "zkvm"))]
{
core::hint::black_box((t0, a0, a1));
unimplemented!()
}
}
fn ecall_4(t0: u32, a0: u32, a1: u32, a2: u32, a3: u32, a4: u32) {
#[cfg(target_os = "zkvm")]
unsafe {
asm!(
"ecall",
in("t0") t0,
in("a0") a0,
in("a1") a1,
in("a2") a2,
in("a3") a3,
in("a4") a4,
)
};
#[cfg(not(target_os = "zkvm"))]
{
core::hint::black_box((t0, a0, a1, a2, a3, a4));
unimplemented!()
}
}
/// # Safety
///
/// `out_state` must be aligned and dereferenceable.
// [inline(never)] is added to mitigate potentially leaking information about program execution
// through the final value of the program counter (pc) on halt where there is more than one
// location in the program where `sys_halt` is called. As long as the halt instruction only exists
// in one place within the program, the pc will always be the same invariant with input.
#[inline(never)]
#[cfg_attr(feature = "export-syscalls", no_mangle)]
pub extern "C" fn sys_halt(user_exit: u8, out_state: *const [u32; DIGEST_WORDS]) -> ! {
ecall_1(
ecall::HALT,
halt::TERMINATE | ((user_exit as u32) << 8),
out_state as u32,
);
unreachable!();
}
/// # Safety
///
/// `out_state` must be aligned and dereferenceable.
// [inline(never)] is added to mitigate potentially leaking information about program execution
// through the final value of the program counter (pc) on pause where there is more than one
// location in the program where `sys_pause` is called. As long as the pause instruction only exists
// in one place within the program, the pc will always be the same invariant with input.
#[inline(never)]
#[cfg_attr(feature = "export-syscalls", no_mangle)]
pub unsafe extern "C" fn sys_pause(user_exit: u8, out_state: *const [u32; DIGEST_WORDS]) {
ecall_1(
ecall::HALT,
halt::PAUSE | ((user_exit as u32) << 8),
out_state as u32,
);
}
#[cfg_attr(feature = "export-syscalls", no_mangle)]
pub extern "C" fn sys_input(index: u32) -> u32 {
let t0 = ecall::INPUT;
let index = index & 0x07;
#[cfg(target_os = "zkvm")]
unsafe {
let a0: u32;
asm!(
"ecall",
in("t0") t0,
inout("a0") index => a0,
);
a0
}
#[cfg(not(target_os = "zkvm"))]
{
core::hint::black_box((t0, index));
unimplemented!()
}
}
/// # Safety
///
/// `out_state`, `in_state`, `block1_ptr`, and `block2_ptr` must be aligned and
/// dereferenceable.
#[inline(always)]
#[cfg_attr(feature = "export-syscalls", no_mangle)]
pub unsafe extern "C" fn sys_sha_compress(
out_state: *mut [u32; DIGEST_WORDS],
in_state: *const [u32; DIGEST_WORDS],
block1_ptr: *const [u32; DIGEST_WORDS],
block2_ptr: *const [u32; DIGEST_WORDS],
) {
ecall_4(
ecall::SHA,
out_state as u32,
in_state as u32,
block1_ptr as u32,
block2_ptr as u32,
1,
);
}
/// # Safety
///
/// `out_state`, `in_state`, and `buf` must be aligned and dereferenceable.
#[inline(always)]
#[cfg_attr(feature = "export-syscalls", no_mangle)]
pub unsafe extern "C" fn sys_sha_buffer(
out_state: *mut [u32; DIGEST_WORDS],
in_state: *const [u32; DIGEST_WORDS],
buf: *const u8,
count: u32,
) {
let mut ptr = buf;
let mut count_remain = count;
let mut in_state = in_state;
while count_remain > 0 {
let count = min(count_remain, MAX_SHA_COMPRESS_BLOCKS as u32);
ecall_4(
ecall::SHA,
out_state as u32,
in_state as u32,
ptr as u32,
ptr.add(DIGEST_BYTES) as u32,
count,
);
count_remain -= count;
ptr = ptr.add(2 * DIGEST_BYTES * count as usize);
in_state = out_state;
}
}
/// # Safety
///
/// `result`, `x`, `y`, and `modulus` must be aligned and dereferenceable.
#[inline(always)]
#[cfg_attr(feature = "export-syscalls", no_mangle)]
pub unsafe extern "C" fn sys_bigint(
result: *mut [u32; bigint::WIDTH_WORDS],
op: u32,
x: *const [u32; bigint::WIDTH_WORDS],
y: *const [u32; bigint::WIDTH_WORDS],
modulus: *const [u32; bigint::WIDTH_WORDS],
) {
ecall_4(
ecall::BIGINT,
result as u32,
op,
x as u32,
y as u32,
modulus as u32,
);
}
/// # Safety
///
/// `recv_buf` must be aligned and dereferenceable.
#[cfg_attr(feature = "export-syscalls", no_mangle)]
pub unsafe extern "C" fn sys_rand(recv_buf: *mut u32, words: usize) {
syscall_0(nr::SYS_RANDOM, recv_buf, words);
}
/// # Safety
///
/// `msg_ptr` must be aligned and dereferenceable.
#[cfg_attr(feature = "export-syscalls", no_mangle)]
pub unsafe extern "C" fn sys_panic(msg_ptr: *const u8, len: usize) -> ! {
syscall_2(nr::SYS_PANIC, null_mut(), 0, msg_ptr as u32, len as u32);
// As a fallback for non-compliant hosts, issue an illegal instruction.
#[cfg(target_os = "zkvm")]
asm!("sw x0, 1(x0)");
unreachable!()
}
/// # Safety
///
/// `msg_ptr` must be aligned and dereferenceable.
#[cfg_attr(feature = "export-syscalls", no_mangle)]
pub unsafe extern "C" fn sys_log(msg_ptr: *const u8, len: usize) {
syscall_2(nr::SYS_LOG, null_mut(), 0, msg_ptr as u32, len as u32);
}
#[cfg_attr(feature = "export-syscalls", no_mangle)]
pub extern "C" fn sys_cycle_count() -> u64 {
let Return(hi, lo) = unsafe { syscall_0(nr::SYS_CYCLE_COUNT, null_mut(), 0) };
((hi as u64) << 32) + lo as u64
}
/// Reads the given number of bytes into the given buffer, posix-style. Returns
/// the number of bytes actually read. On end of file, returns 0.
///
/// Like POSIX read, this is not guaranteed to read all bytes
/// requested. If we haven't reached EOF, it is however guaranteed to
/// read at least one byte.
///
/// Users should prefer a higher-level abstraction.
///
/// # Safety
///
/// `recv_ptr` must be aligned and dereferenceable.
#[cfg_attr(feature = "export-syscalls", no_mangle)]
pub unsafe extern "C" fn sys_read(fd: u32, recv_ptr: *mut u8, nread: usize) -> usize {
// The SYS_READ system call can do a given number of word-aligned reads
// efficiently. The semantics of the system call are:
//
// (nread, word) = syscall_2(nr::SYS_READ, outbuf,
// num_words_in_outbuf, fd, nbytes);
//
// This reads exactly nbytes from the file descriptor, and fills the words
// in outbuf, followed by up to 4 bytes returned in "word", and fills
// the rest with NULs. It returns the number of bytes read.
//
// sys_read exposes this as a byte-aligned read by:
// * Copies any unaligned bytes at the start or end of the region.
// Fills 0-3 bytes from a u32 into memory, returning the pointer afterwards.
unsafe fn fill_from_word(mut ptr: *mut u8, mut word: u32, nfill: usize) -> *mut u8 {
debug_assert!(nfill < 4, "nfill={nfill}");
for _ in 0..nfill {
*ptr = (word & 0xFF) as u8;
word >>= 8;
ptr = ptr.add(1);
}
ptr
}
// Determine how many bytes at the beginning of the buffer we have
// to read in order to become word-aligned.
let ptr_offset = (recv_ptr as usize) & (WORD_SIZE - 1);
let (main_ptr, main_requested, nread_first) = if ptr_offset == 0 {
(recv_ptr, nread, 0)
} else {
let unaligned_at_start = min(nread, WORD_SIZE - ptr_offset);
// Read unaligned bytes into "firstword".
let Return(nread_first, firstword) =
syscall_2(nr::SYS_READ, null_mut(), 0, fd, unaligned_at_start as u32);
debug_assert_eq!(nread_first as usize, unaligned_at_start);
// Align up to a word boundary to do the main copy.
let main_ptr = fill_from_word(recv_ptr, firstword, unaligned_at_start);
if nread == unaligned_at_start {
// We only read part of a word, and don't have to read any full words.
return nread;
}
(main_ptr, nread - unaligned_at_start, nread_first as usize)
};
// Copy in all of the word-aligned data
let main_words = main_requested / WORD_SIZE;
let (nread_main, lastword) =
sys_read_internal(fd, main_ptr as *mut u32, main_words, main_requested);
debug_assert!(nread_main <= main_requested);
let read_words = nread_main / WORD_SIZE;
// Copy in individual bytes after the word-aligned section.
let unaligned_at_end = main_requested % WORD_SIZE;
// The last 0-3 bytes are returned in lastword. Write those to complete the _requested_ read amount.
fill_from_word(
main_ptr.add(main_words * WORD_SIZE),
lastword,
unaligned_at_end,
);
nread_first + nread_main
}
/// Reads up to the given number of words into the buffer [recv_buf,
/// recv_buf + nwords). Returns the number of bytes actually read.
/// sys_read_words is a more efficient interface than sys_read, but
/// varies from POSIX semantics. Notably:
///
/// * The read length is specified in words, not bytes. (The output
/// length is still returned in bytes)
///
/// * If not all data is available, `sys_read_words` will return a short read.
///
/// * recv_buf must be word-aligned.
///
/// * Return a short read in the case of EOF mid-way through.
///
/// # Safety
///
/// `recv_ptr' must be a word-aligned pointer and point to a region of
/// `nwords' size.
#[cfg_attr(feature = "export-syscalls", no_mangle)]
pub unsafe extern "C" fn sys_read_words(fd: u32, recv_ptr: *mut u32, nwords: usize) -> usize {
sys_read_internal(fd, recv_ptr, nwords, nwords * WORD_SIZE).0
}
fn sys_read_internal(fd: u32, recv_ptr: *mut u32, nwords: usize, nbytes: usize) -> (usize, u32) {
let mut nwords_remain = nwords;
let mut nbytes_remain = nbytes;
let mut nread_total_bytes = 0;
let mut recv_ptr = recv_ptr;
let mut final_word = 0;
while nbytes_remain > 0 {
debug_assert!(
final_word == 0,
"host returned non-zero final word on a fully aligned read"
);
let chunk_len = min(nbytes_remain, MAX_BUF_BYTES) as u32;
let Return(nread_bytes, last_word) = unsafe {
syscall_2(
nr::SYS_READ,
recv_ptr,
min(nwords_remain, MAX_BUF_WORDS),
fd,
chunk_len,
)
};
let nread_bytes = nread_bytes as usize;
let nread_words = nread_bytes / WORD_SIZE;
recv_ptr = unsafe { recv_ptr.add(nread_words) };
final_word = last_word;
nwords_remain -= nread_words;
nread_total_bytes += nread_bytes;
nbytes_remain -= nread_bytes;
if nread_bytes < chunk_len as usize {
// We've reached EOF, and the host has returned a partial word.
break;
}
}
(nread_total_bytes, final_word)
}
/// # Safety
///
/// `write_ptr` must be aligned and dereferenceable.
#[cfg_attr(feature = "export-syscalls", no_mangle)]
pub unsafe extern "C" fn sys_write(fd: u32, write_ptr: *const u8, nbytes: usize) {
let mut nbytes_remain = nbytes;
let mut write_ptr = write_ptr;
while nbytes_remain > 0 {
let nbytes = min(nbytes_remain, MAX_BUF_BYTES);
syscall_3(
nr::SYS_WRITE,
null_mut(),
0,
fd,
write_ptr as u32,
nbytes as u32,
);
write_ptr = write_ptr.add(nbytes);
nbytes_remain -= nbytes;
}
}
/// Retrieves the value of an environment variable, and stores as much
/// of it as it can it in the memory at [out_words, out_words +
/// out_nwords).
///
/// Returns the length of the value, in bytes, or usize::MAX if the variable is
/// not set.
///
/// This is normally called twice to read an environment variable:
/// Once to get the length of the value, and once to fill in allocated
/// memory.
///
/// NOTE: Repeated calls to sys_getenv are not guaranteed to result in the same
/// data being returned. Returned data is entirely in the control of the host.
///
/// # Safety
///
/// `out_words` and `varname` must be aligned and dereferenceable.
#[cfg_attr(feature = "export-syscalls", no_mangle)]
pub unsafe extern "C" fn sys_getenv(
out_words: *mut u32,
out_nwords: usize,
varname: *const u8,
varname_len: usize,
) -> usize {
let Return(a0, _) = syscall_2(
nr::SYS_GETENV,
out_words,
out_nwords,
varname as u32,
varname_len as u32,
);
if a0 == u32::MAX {
usize::MAX
} else {
a0 as usize
}
}
/// Retrieves the count of arguments provided to program execution.
///
/// NOTE: Repeated calls to sys_argc are not guaranteed to result in the same
/// data being returned. Returned data is entirely in the control of the host.
#[cfg_attr(feature = "export-syscalls", no_mangle)]
pub extern "C" fn sys_argc() -> usize {
let Return(a0, _) = unsafe { syscall_0(nr::SYS_ARGC, null_mut(), 0) };
a0 as usize
}
/// Retrieves the argument with arg_index, and stores as much
/// of it as it can it in the memory at [out_words, out_words +
/// out_nwords).
///
/// Returns the length, in bytes, of the argument string. If the requested
/// argument index does not exist (i.e. `arg_index` >= argc) then this syscall
/// will not return.
///
/// This is normally called twice to read an argument: Once to get the length of
/// the value, and once to fill in allocated memory.
///
/// NOTE: Repeated calls to sys_argv are not guaranteed to result in the same
/// data being returned. Returned data is entirely in the control of the host.
///
/// # Safety
///
/// `out_words` must be aligned and dereferenceable.
#[cfg_attr(feature = "export-syscalls", no_mangle)]
pub unsafe extern "C" fn sys_argv(
out_words: *mut u32,
out_nwords: usize,
arg_index: usize,
) -> usize {
let Return(a0, _) = syscall_1(nr::SYS_ARGV, out_words, out_nwords, arg_index as u32);
a0 as usize
}
#[cfg_attr(feature = "export-syscalls", no_mangle)]
pub extern "C" fn sys_alloc_words(nwords: usize) -> *mut u32 {
unsafe { sys_alloc_aligned(WORD_SIZE * nwords, WORD_SIZE) as *mut u32 }
}
/// # Safety
///
/// This function should be safe to call, but clippy complains if it is not marked as `unsafe`.
#[cfg(feature = "export-syscalls")]
#[no_mangle]
pub unsafe extern "C" fn sys_alloc_aligned(bytes: usize, align: usize) -> *mut u8 {
#[cfg(target_os = "zkvm")]
extern "C" {
// This symbol is defined by the loader and marks the end
// of all elf sections, so this is where we start our
// heap.
//
// This is generated automatically by the linker; see
// https://lld.llvm.org/ELF/linker_script.html#sections-command
static _end: u8;
}
// Pointer to next heap address to use, or 0 if the heap has not yet been
// initialized.
static mut HEAP_POS: usize = 0;
// SAFETY: Single threaded, so nothing else can touch this while we're working.
let mut heap_pos = unsafe { HEAP_POS };
#[cfg(target_os = "zkvm")]
if heap_pos == 0 {
heap_pos = unsafe { (&_end) as *const u8 as usize };
}
// Honor requested alignment if larger than word size.
// Note: align is typically a power of two.
let align = usize::max(align, WORD_SIZE);
let offset = heap_pos & (align - 1);
if offset != 0 {
heap_pos += align - offset;
}
let ptr = heap_pos as *mut u8;
heap_pos += bytes;
// Check to make sure heap doesn't collide with SYSTEM memory.
if crate::memory::SYSTEM.start() < heap_pos {
const MSG: &[u8] = "Out of memory!".as_bytes();
unsafe { sys_panic(MSG.as_ptr(), MSG.len()) };
}
unsafe { HEAP_POS = heap_pos };
ptr
}
/// Send a ReceiptClaim digest to the host to request verification.
///
/// A cooperative prover will only return if there is a verifying proof
/// associated with that claim digest, and will always return a result code
/// of 0 to register a0. The caller must encode the claim_digest into a
/// public assumptions list for inclusion in the guest output.
///
/// # Safety
///
/// `claim_digest` must be aligned and dereferenceable.
/// `control_root` must be aligned and dereferenceable.
#[cfg(feature = "export-syscalls")]
#[no_mangle]
pub unsafe extern "C" fn sys_verify_integrity(
claim_digest: *const [u32; DIGEST_WORDS],
control_root: *const [u32; DIGEST_WORDS],
) {
let mut to_host = [0u32; DIGEST_WORDS * 2];
to_host[..DIGEST_WORDS].copy_from_slice(claim_digest.as_ref().unwrap_unchecked());
to_host[DIGEST_WORDS..].copy_from_slice(control_root.as_ref().unwrap_unchecked());
let Return(a0, _) = unsafe {
// Send the claim_digest to the host via software ecall.
syscall_2(
nr::SYS_VERIFY_INTEGRITY,
null_mut(),
0,
to_host.as_ptr() as u32,
(DIGEST_BYTES * 2) as u32,
)
};
// Check to ensure the host indicated success by returning 0.
// This should always be the case. This check is included for
// forwards-compatibility.
if a0 != 0 {
const MSG: &[u8] = "sys_verify_integrity returned error result".as_bytes();
unsafe { sys_panic(MSG.as_ptr(), MSG.len()) };
}
}
// Make sure we only get one of these since it's stateful.
#[cfg(not(feature = "export-syscalls"))]
extern "C" {
pub fn sys_alloc_aligned(nwords: usize, align: usize) -> *mut u8;
}