1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
// Copyright 2024 RISC Zero, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Utilities for accessing buffers of circuits symbolically.
use alloc::{collections::BTreeMap, string::String, vec::Vec};
#[cfg(not(feature = "std"))]
use alloc::{format, string::ToString};
use core::fmt::{Debug, Formatter, Write};
use anyhow::Result;
pub use paste::paste;
#[macro_export]
/// Defines a buffer in a circuit that could have layout information. $ident
/// should be the camelcase name of the buffer, and $elem should be the type of
/// element in the buffer, e.g. BabyBearElem. $elem must implement Debug, and
/// must be comparable to $elem::ZERO.
macro_rules! layout_buffer {
($ident:ident, $elem:ty) => {
$crate::layout::paste! {
pub struct [<$ident:camel Reg>] {
pub offset: usize,
}
impl core::convert::From<usize> for [<$ident:camel Reg>] {
fn from(offset: usize) -> Self { Self{offset} }
}
impl $crate::layout::Component for [<$ident:camel Reg>] {
fn walk<V: $crate::layout::Visitor>(&self, v: &mut V) -> core::fmt::Result {
v.visit_reg(stringify!($ident), self.offset)
}
fn ty_name(&self) -> &'static str { "reg" }
}
#[derive(Clone, Copy)]
pub struct [<$ident:camel Buffer>]<'a> (
pub &'a[$elem],
);
impl<'a> core::convert::From<&'a [$elem]> for [<$ident:camel Buffer>]<'a> {
fn from(buf: &'a [$elem]) -> Self {
Self(buf)
}
}
impl<'a> $crate::layout::Buffer for [<$ident:camel Buffer>]<'a> {
type Reg = [<$ident:camel Reg>];
type Elem = $elem;
fn tree<'b, C: $crate::layout::Component>(&'b self, component: &'b C) -> $crate::layout::Tree<Self, C> {
$crate::layout::Tree{buf: self, component}
}
fn name(&self) -> &'static str {
stringify!($ident)
}
fn get(&self, reg: &Self::Reg) -> core::option::Option<&$elem> {
if reg.offset > self.0.len() {
None
} else {
let val = &self.0[reg.offset];
if *val == $elem::ZERO {
None
} else {
Some(val)
}
}
}
fn get_u64(&self, reg: &Self::Reg) -> u64 {
u64::from(self.0[reg.offset])
}
}
}};
}
/// A circuit execution trace buffer, which we can read laid out components
/// from.
pub trait Buffer: Sized {
/// The type of element stored in this buffer.
type Elem: Debug;
/// A register in this buffer, convertable from an offset.
type Reg: From<usize>;
/// Returns the component tree rooted at the given component.
fn tree<'a, C: Component>(&'a self, component: &'a C) -> Tree<'a, Self, C>;
/// Returns the argument name of this buffer.
fn name(&self) -> &'static str;
/// Retrieve an element from this buffer.
fn get(&self, reg: &Self::Reg) -> Option<&Self::Elem>;
/// Retrieve an element from this buffer and convert it to a u64
fn get_u64(&self, reg: &Self::Reg) -> u64;
/// Retrieve an element from this buffer and convert it to a u32
fn get_u32(&self, reg: &Self::Reg) -> u32 {
self.get_u64(reg) as u32
}
}
/// A component within a circuit execution trace buffer. Users should
/// not use this directly; it is only "pub" so it can be used by the
/// layout_buffer macro.
#[doc(hidden)]
pub trait Component {
fn walk<V: Visitor>(&self, v: &mut V) -> core::fmt::Result;
fn ty_name(&self) -> &'static str {
"array"
}
}
impl<C: Component, const N: usize> Component for [&C; N] {
fn walk<V: Visitor>(&self, v: &mut V) -> core::fmt::Result {
for (n, elem) in self.iter().enumerate() {
let name = alloc::format!("[{n}]");
v.visit_component(&name, *elem)?;
}
Ok(())
}
}
/// A visitor that visits components in a component tree. Users
/// should not use this directly; it is only "pub" so it can be used
/// by the layout_buffer macro.
#[doc(hidden)]
pub trait Visitor {
fn visit_component(&mut self, name: &str, component: &impl Component) -> core::fmt::Result;
fn visit_reg(&mut self, buf_name: &'static str, offset: usize) -> core::fmt::Result;
}
/// Represents the section of a component tree that's present in a buffer.
pub struct Tree<'a, B: Buffer, C: Component> {
// Fields only marked "pub" so they can be used by the layout_buffer! macro.
#[doc(hidden)]
pub buf: &'a B,
#[doc(hidden)]
pub component: &'a C,
}
impl<'a, B: Buffer, C: Component> Tree<'a, B, C> {
/// Interprets the contents of this tree as a list of u64s.
pub fn get_u64s(&self) -> Result<Vec<u64>> {
let mut gather = TreeGather::new(self.buf);
self.component
.walk(&mut gather)
.map_err(anyhow::Error::msg)?;
Ok(gather.vals)
}
/// Interprets the contents of this tree as a list of bytes.
pub fn get_bytes(&self) -> Result<Vec<u8>> {
self.get_u64s()?
.into_iter()
.map(|val| u8::try_from(val).map_err(anyhow::Error::msg))
.collect()
}
/// Returns the contents of this tree as a u32; elements are expected to be
/// 4 bytes.
pub fn get_u32(&self) -> Result<u32> {
Ok(u32::from_le_bytes(
self.get_bytes()?
.as_slice()
.try_into()
.map_err(anyhow::Error::msg)?,
))
}
}
impl<'a, B: Buffer, C: Component> Debug for Tree<'a, B, C> {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
let mut p = TreePrinter::new(self.buf, Vec::new(), "top");
self.component.walk(&mut p)?;
for line in p.lines {
writeln!(f, "{line}")?;
}
Ok(())
}
}
// Collects a tree dump as a set of lines. Lists identical sections as a
// reference to the first one seen.
struct TreePrinter<'a, B: Buffer> {
buf: &'a B,
lines: Vec<String>,
item_count: usize,
seen: BTreeMap<Vec<String>, String>,
path: Vec<&'a str>,
}
impl<'a, B: Buffer> TreePrinter<'a, B> {
fn new(buf: &'a B, mut path: Vec<&'a str>, name: &'a str) -> Self {
path.push(name);
TreePrinter {
buf,
lines: Vec::new(),
item_count: 0,
seen: BTreeMap::new(),
path,
}
}
}
impl<'a, B: Buffer> Visitor for TreePrinter<'a, B> {
fn visit_component(&mut self, name: &str, component: &impl Component) -> core::fmt::Result {
match component.ty_name() {
"U32Reg" => {
// U32regs print as hexadecimal.
let mut subtree = TreeGather::new(self.buf);
component.walk(&mut subtree)?;
if subtree.vals.iter().any(|&x| x != 0) {
let mut msg = format!("{name}: ");
write!(msg, " 0x")?;
for val in subtree.vals {
if val > 255 {
// Unexpected non-byte in u32reg
write!(msg, "[{:#x}?]", val)?;
} else {
write!(msg, "{:02x}", val)?;
}
}
self.lines.push(msg);
self.item_count += 1;
}
}
_ => {
// Generic subtree
let mut subtree = TreePrinter::new(self.buf, self.path.clone(), name);
component.walk(&mut subtree)?;
match subtree.item_count {
0 => {}
1 => {
// Single item inside; build up path on a
// single line to save vertical space for
// structures like a{b{c{x: y}}}.
self.item_count += 1;
let mut lines = subtree.lines;
lines[0] = format!("{name}: {{{}", lines[0]);
lines.last_mut().as_mut().unwrap().push_str(" }");
self.lines.extend(lines);
}
_ => {
// Multi-line structure; if we've seen this before, just emit a reference.
// Otherwise, save it.
self.item_count += 1;
match self.seen.get(&subtree.lines) {
Some(path) => {
self.lines.push(format!("{name}: duplicate of {path}"));
}
None => {
self.seen.extend(subtree.seen);
self.lines.push(format!("{name}: {{"));
self.lines
.extend(subtree.lines.iter().map(|s| format!(" {s}")));
self.lines.push("}".to_string());
self.seen.insert(subtree.lines, subtree.path.join("."));
}
}
}
}
}
}
Ok(())
}
fn visit_reg(&mut self, buf_name: &'static str, offset: usize) -> core::fmt::Result {
if buf_name == self.buf.name() {
if let Some(val) = self.buf.get(&B::Reg::from(offset)) {
self.lines.push(format!("{:?}", val));
self.item_count += 1;
}
}
Ok(())
}
}
// Gathers all the registers in a tree as u64s.
struct TreeGather<'a, B: Buffer> {
buf: &'a B,
vals: Vec<u64>,
}
impl<'a, B: Buffer> TreeGather<'a, B> {
fn new(buf: &'a B) -> Self {
Self {
buf,
vals: Vec::new(),
}
}
}
impl<'a, B: Buffer> Visitor for TreeGather<'a, B> {
fn visit_component(&mut self, _name: &str, component: &impl Component) -> core::fmt::Result {
component.walk(self)
}
fn visit_reg(&mut self, buf_name: &'static str, offset: usize) -> core::fmt::Result {
if buf_name == self.buf.name() {
self.vals.push(self.buf.get_u64(&B::Reg::from(offset)))
}
Ok(())
}
}