1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// Copyright 2022 Risc0, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Support for the base finite field modulo 15*2^27 + 1

use core::ops;

use bytemuck::{Pod, Zeroable};
use rand::Rng;

/// The modulus of the field.
pub const P: u32 = 15 * (1 << 27) + 1;
/// The modulus of the field as a u64.
pub const P_U64: u64 = P as u64;

/// The Fp class is an element of the finite field F_p, where P is the prime
/// number 15*2^27 + 1. Put another way, Fp is basically integer arithmetic
/// modulo P.
///
/// The `Fp` datatype is the core type of all of the operations done within the
/// zero knowledge proofs, and is the smallest 'addressable' datatype, and the
/// base type of which all composite types are built. In many ways, one can
/// imagine it as the word size of a very strange architecture.
///
/// This specific prime P was chosen to:
/// - Be less than 2^31 so that it fits within a 32 bit word and doesn't
///   overflow on addition.
/// - Otherwise have as large a power of 2 in the factors of P-1 as possible.
///
/// This last property is useful for number theoretical transforms (the fast
/// fourier transform equivelant on finite fields). See NTT.h for details.
///
/// The Fp class wraps all the standard arithmetic operations to make the finite
/// field elements look basically like ordinary numbers (which they mostly are).
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq, PartialOrd, Zeroable, Pod)]
#[repr(transparent)]
pub struct Fp(u32);

impl Fp {
    /// Create a new [Fp] from a raw integer.
    pub const fn new(x: u32) -> Self {
        Self(x)
    }

    /// Return the maximum value that an [Fp] can take.
    pub fn max() -> Self {
        Self(P - 1)
    }

    /// Generate a uniform random value.
    pub fn random<R: Rng>(rng: &mut R) -> Self {
        // Reject the last modulo-P region of possible uint32_t values, since it's
        // uneven and will only return random values less than (2^32 % P).
        const REJECT_CUTOFF: u32 = (u32::MAX / P) * P;
        let mut val: u32 = rng.gen();

        while val >= REJECT_CUTOFF {
            val = rng.gen();
        }
        Fp::from(val)
    }

    /// Raise an `Fp` value to the power of `n`.
    pub fn pow(self, n: usize) -> Self {
        let mut n = n;
        let mut tot = Fp(1);
        let mut x = self;
        while n != 0 {
            if n % 2 == 1 {
                tot *= x;
            }
            n = n / 2;
            x *= x;
        }
        tot
    }

    /// Compute the multiplicative inverse of `x`, or `1 / x` in finite field
    /// terms. Since `x ^ (P - 1) == 1 % P` for any `x != 0` (as a
    /// consequence of Fermat's little theorem), it follows that `x *
    /// x ^ (P - 2) == 1 % P` for `x != 0`.  That is, `x ^ (P - 2)` is the
    /// multiplicative inverse of `x`. Computed this way, the *inverse* of
    /// zero comes out as zero, which is convenient in many cases, so we
    /// leave it.
    pub fn inv(self) -> Self {
        self.pow((P - 2) as usize)
    }
}

impl ops::Add for Fp {
    type Output = Self;
    fn add(self, rhs: Self) -> Self {
        Fp(add(self.0, rhs.0))
    }
}

impl ops::AddAssign for Fp {
    fn add_assign(&mut self, rhs: Self) {
        self.0 = add(self.0, rhs.0)
    }
}

impl ops::Sub for Fp {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self {
        Fp(sub(self.0, rhs.0))
    }
}

impl ops::SubAssign for Fp {
    fn sub_assign(&mut self, rhs: Self) {
        self.0 = sub(self.0, rhs.0)
    }
}

impl ops::Mul for Fp {
    type Output = Self;
    fn mul(self, rhs: Self) -> Self {
        Fp(mul(self.0, rhs.0))
    }
}

impl ops::MulAssign for Fp {
    fn mul_assign(&mut self, rhs: Self) {
        self.0 = mul(self.0, rhs.0)
    }
}

impl ops::Neg for Fp {
    type Output = Self;
    fn neg(self) -> Self {
        Fp(0) - self
    }
}

impl From<Fp> for u32 {
    fn from(x: Fp) -> Self {
        x.0
    }
}

impl From<Fp> for u64 {
    fn from(x: Fp) -> Self {
        x.0.into()
    }
}

impl From<u32> for Fp {
    fn from(x: u32) -> Self {
        Fp(x % P)
    }
}

impl From<u64> for Fp {
    fn from(x: u64) -> Self {
        Fp((x % P_U64) as u32)
    }
}

fn add(lhs: u32, rhs: u32) -> u32 {
    let x = lhs + rhs;
    return if x >= P { x - P } else { x };
}

fn sub(lhs: u32, rhs: u32) -> u32 {
    let x = lhs.wrapping_sub(rhs);
    return if x > P { x.wrapping_add(P) } else { x };
}

fn mul(lhs: u32, rhs: u32) -> u32 {
    (((lhs as u64) * (rhs as u64)) % P_U64) as u32
}

#[cfg(test)]
mod tests {
    use super::{Fp, P, P_U64};
    use rand::SeedableRng;

    #[test]
    fn inv() {
        // Smoke test for inv
        assert_eq!(Fp(5).inv() * Fp(5), Fp(1));
    }

    #[test]
    fn pow() {
        // Smoke tests for pow
        assert_eq!(Fp(5).pow(0), Fp(1));
        assert_eq!(Fp(5).pow(1), Fp(5));
        assert_eq!(Fp(5).pow(2), Fp(25));
        // Mathematica says PowerMod[5, 1000, 15*2^27 + 1] == 589699054
        assert_eq!(Fp(5).pow(1000), Fp(589699054));
        assert_eq!(Fp(5).pow((P - 2) as usize) * Fp(5), Fp(1));
        assert_eq!(Fp(5).pow((P - 1) as usize), Fp(1));
    }

    #[test]
    fn compare_native() {
        // Compare core operations against simple % P implementations
        let mut rng = rand::rngs::SmallRng::seed_from_u64(2);
        for _ in 0..100_000 {
            let fa = Fp::random(&mut rng);
            let fb = Fp::random(&mut rng);
            let a: u64 = fa.into();
            let b: u64 = fb.into();
            assert_eq!(fa + fb, Fp::from(a + b));
            assert_eq!(fa - fb, Fp::from(a + (P_U64 - b)));
            assert_eq!(fa * fb, Fp::from(a * b));
        }
    }
}