1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
// Copyright 2023 RISC Zero, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Goldilocks field.
//!
//! Support for the finite field of order `2^64 - 2^32 + 1`, and its degree 2
//! extension field. This field choice allows for fast reduction.
use alloc::vec::Vec;
use core::ops;
use bytemuck::{Pod, Zeroable};
use crate::field::{self, Elem as FieldElem};
/// The Goldilocks class is an element of the finite field F_p, where P is the
/// prime number 2^64 - 2^32 + 1. Here we implement integer
/// arithmetic modulo P for both Goldilocks and for a field extension of
/// Goldilocks.
///
/// The `Fp` datatype is the core type of all of the operations done within the
/// zero knowledge proofs, and is the smallest 'addressable' datatype, and the
/// base type of which all composite types are built. In many ways, one can
/// imagine it as the word size of a strange architecture,
/// and its operations as wrapping operations which respect word size P.
///
/// The Fp class wraps all standard arithmetic operations to make finite
/// field elements appear like ordinary numbers (which, for the most part, they
/// are).
#[derive(Eq, PartialEq, Clone, Copy, Debug, Pod, Zeroable)]
#[repr(transparent)]
pub struct Elem(u64);
/// Alias for the Goldilocks [Elem]
pub type GoldilocksElem = Elem;
impl Default for Elem {
    /// As a default, return the zero [Elem].
    fn default() -> Self {
        Self::ZERO
    }
}
/// The modulus of our Goldilocks field: 2^64 - 2^32 + 1
/// Calculation steps chosen to avoid overflowing u64 with 2^64:
/// 1. Start with all 64-bits of ones
/// 2. Left-shift ones over by 32, leaving 32 ones and 32 zeros: `(2^64 - 2^32)`
/// 3. Add one to get `2^64 - 2^32 + 1`
const P: u64 = (0xffffffff_ffffffff << 32) + 1;
impl field::Elem for Elem {
    const INVALID: Self = Elem(0xffffffff_ffffffff);
    const ZERO: Self = Elem::new(0u64);
    const ONE: Self = Elem::new(1u64);
    const WORDS: usize = 2;
    /// Compute the multiplicative inverse of `x`, or `1 / x` in finite field
    /// terms. Since we know by Fermat's Little Theorem that
    /// `x ^ (P - 1) == 1 % P` for any `x != 0`,
    /// it follows that `x * x ^ (P - 2) == 1 % P` for `x != 0`.
    /// That is, `x ^ (P - 2)` is the multiplicative inverse of `x`.
    /// Note that if computed this way, the *inverse* of zero comes out as zero,
    /// which we allow because it is convenient in many cases.
    fn inv(self) -> Self {
        self.pow((P - 2) as usize)
    }
    /// Generate a random value within the Goldilocks field
    fn random(rng: &mut impl rand_core::RngCore) -> Self {
        // The range of possible RNG-generated u64 integers includes an uneven region
        // modulo P. We want to reject u64 values from this region because, if
        // mapped to finite field elements (wrapped), it leads to over-selection
        // of the wrapped values. Here, P happens to fit only once into a 64-bit
        // space, so we accept only RNG-generated u64 values less than P.
        let mut val: u64 = rng.next_u64();
        while val >= P {
            val = rng.next_u64();
        }
        Elem::from(val)
    }
    fn from_u64(x0: u64) -> Self {
        Elem::new(x0)
    }
    fn to_u32_words(&self) -> Vec<u32> {
        Vec::<u32>::from([self.0 as u32, (self.0 >> 32) as u32])
    }
    fn from_u32_words(val: &[u32]) -> Self {
        let val: u64 = val[0] as u64 + ((val[1] as u64) << 32);
        Self(val)
    }
    fn is_valid(&self) -> bool {
        self.0 != Self::INVALID.0
    }
}
macro_rules! rou_array {
    [$($x:literal),* $(,)?] => {
        [$(Elem::new($x)),* ]
    }
}
impl field::RootsOfUnity for Elem {
    /// Maximum power of two for which we have a root of unity using Goldilocks
    /// field
    const MAX_ROU_PO2: usize = 32;
    /// 'Forward' root of unity for each power of two.
    const ROU_FWD: &'static [Elem] = &rou_array![
        1,
        18446744069414584320,
        281474976710656,
        18446744069397807105,
        17293822564807737345,
        70368744161280,
        549755813888,
        17870292113338400769,
        13797081185216407910,
        1803076106186727246,
        11353340290879379826,
        455906449640507599,
        17492915097719143606,
        1532612707718625687,
        16207902636198568418,
        17776499369601055404,
        6115771955107415310,
        12380578893860276750,
        9306717745644682924,
        18146160046829613826,
        3511170319078647661,
        17654865857378133588,
        5416168637041100469,
        16905767614792059275,
        9713644485405565297,
        5456943929260765144,
        17096174751763063430,
        1213594585890690845,
        6414415596519834757,
        16116352524544190054,
        9123114210336311365,
        4614640910117430873,
        1753635133440165772,
    ];
    /// 'Reverse' root of unity for each power of two.
    const ROU_REV: &'static [Elem] = &rou_array![
        1,
        18446744069414584320,
        18446462594437873665,
        1099511627520,
        68719476736,
        18446744069414322177,
        18302628881338728449,
        18442240469787213841,
        2117504431143841456,
        4459017075746761332,
        4295002282146690441,
        8548973421900915981,
        11164456749895610016,
        3968367389790187850,
        4654242210262998966,
        1553425662128427817,
        7868944258580147481,
        14744321562856667967,
        2513567076326282710,
        5089696809409609209,
        17260140776825220475,
        11898519751787946856,
        15307271466853436433,
        5456584715443070302,
        1219213613525454263,
        13843946492009319323,
        16884827967813875098,
        10516896061424301529,
        4514835231089717636,
        16488041148801377373,
        16303955383020744715,
        10790884855407511297,
        8554224884056360729,
    ];
}
impl Elem {
    /// Create a new Goldilocks field [Elem] from a raw integer.
    pub const fn new(x: u64) -> Self {
        Self(x % P)
    }
}
impl ops::Add for Elem {
    type Output = Self;
    /// Addition for Goldilocks field [Elem]
    fn add(self, rhs: Self) -> Self {
        Elem(add(self.0, rhs.0))
    }
}
impl ops::AddAssign for Elem {
    /// Simple addition case for Goldilocks field [Elem]
    fn add_assign(&mut self, rhs: Self) {
        self.0 = add(self.0, rhs.0)
    }
}
impl ops::Sub for Elem {
    type Output = Self;
    /// Subtraction for Goldilocks field [Elem]
    fn sub(self, rhs: Self) -> Self {
        Elem(sub(self.0, rhs.0))
    }
}
impl ops::SubAssign for Elem {
    /// Simple subtraction case for Goldilocks field [Elem]
    fn sub_assign(&mut self, rhs: Self) {
        self.0 = sub(self.0, rhs.0)
    }
}
impl ops::Mul for Elem {
    type Output = Self;
    /// Multiplication for Goldilocks field [Elem]
    fn mul(self, rhs: Self) -> Self {
        Elem(mul(self.0, rhs.0))
    }
}
impl ops::MulAssign for Elem {
    /// Simple multiplication case for Goldilocks field [Elem]
    fn mul_assign(&mut self, rhs: Self) {
        self.0 = mul(self.0, rhs.0)
    }
}
impl ops::Neg for Elem {
    type Output = Self;
    /// Negation for Goldilocks field [Elem]
    fn neg(self) -> Self {
        Elem(0) - self
    }
}
impl From<&Elem> for u64 {
    fn from(x: &Elem) -> Self {
        x.0
    }
}
impl From<Elem> for u64 {
    fn from(x: Elem) -> Self {
        x.0
    }
}
impl From<u64> for Elem {
    fn from(x: u64) -> Self {
        Elem(x % P)
    }
}
/// Wrapping addition of [Elem] using Goldilocks field modulus
fn add(lhs: u64, rhs: u64) -> u64 {
    let x = lhs.wrapping_add(rhs);
    // If we're above P or have done a u64::MAX modulus
    if x < lhs || x >= P {
        x.wrapping_sub(P)
    } else {
        x
    }
}
/// Wrapping subtraction of [Elem] using Goldilocks field modulus
fn sub(lhs: u64, rhs: u64) -> u64 {
    let x = lhs.wrapping_sub(rhs);
    if x > lhs {
        x.wrapping_add(P)
    } else {
        x
    }
}
/// Wrapping multiplication of [Elem] using Goldilocks field modulus
fn mul(lhs: u64, rhs: u64) -> u64 {
    // To prevent u64 overflow, we first perform with u128
    let prod: u128 = (lhs as u128).wrapping_mul(rhs as u128);
    // Initialize result to low 64 bits (by converting)
    let ret: u64 = prod as u64;
    // Get two high words
    let med: u32 = (prod >> 64) as u32;
    let high: u32 = (prod >> 96) as u32;
    // Subtract out high bits, add in P if underflow
    let ret = if ret >= (high as u64) {
        ret.wrapping_sub(high as u64)
    } else {
        ret.wrapping_sub(high as u64).wrapping_add(P)
    };
    // Compute shifted effect of medium
    let med_shift = ((med as u64) << 32).wrapping_sub(med as u64);
    // Add in, if overflow, subtract a P
    let ret = ret.wrapping_add(med_shift);
    if ret < med_shift || ret >= P {
        ret.wrapping_sub(P)
    } else {
        ret
    }
}
/// The size of the extension field (as number of elements).
const EXT_SIZE: usize = 2;
/// Instances of `ExtElem` are elements of a finite field `F_p^2`. They are
/// represented as elements of `F_p[X] / (X^2 - 11)`. This large
/// finite field (about `2^128` elements) is used when the security of
/// operations depends on the size of the field. The field extension `ExtElem`
/// has `Elem` as a subfield, so operations on elements of each are compatible.
/// The irreducible polynomial `x^2 - 11` was chosen because `11` is
/// the simplest choice of `BETA` for `x^2 - BETA` that makes this polynomial
/// irreducible.
#[derive(Eq, PartialEq, Clone, Copy, Debug, Pod, Zeroable)]
#[repr(transparent)]
pub struct ExtElem([Elem; EXT_SIZE]);
/// Alias for the Goldilocks [ExtElem]
pub type GoldilocksExtElem = ExtElem;
impl Default for ExtElem {
    fn default() -> Self {
        Self::ZERO
    }
}
impl field::Elem for ExtElem {
    const INVALID: Self = ExtElem::new(Elem::INVALID, Elem::INVALID);
    const ZERO: Self = ExtElem::zero();
    const ONE: Self = ExtElem::one();
    const WORDS: usize = 4;
    /// Generate a random [ExtElem] uniformly.
    fn random(rng: &mut impl rand_core::RngCore) -> Self {
        Self([Elem::random(rng), Elem::random(rng)])
    }
    /// Raise an [ExtElem] to a power of `n`.
    fn pow(self, n: usize) -> Self {
        let mut n = n;
        let mut tot = ExtElem::from(1);
        let mut x = self;
        while n != 0 {
            if n % 2 == 1 {
                tot *= x;
            }
            n /= 2;
            x *= x;
        }
        tot
    }
    /// Compute the multiplicative inverse of a field element [ExtElem].
    fn inv(self) -> Self {
        let a = &self.0;
        // Compute the multiplicative inverse by looking at Fp2 as a composite field and
        // using the same basic methods used to invert complex numbers.
        // Starting with field element `a`, we begin with the initial value `out = 1 /
        // a`. Setting `a'` to be `a` with a_1 negated, we multiply the
        // numerator and the denominator by `a'` to produce `a' / (a * a') =
        // (a_0 - a_1) / (a_0^2 + B * a_1^2)`. To safely compute this value,
        // we multiply by the safe inverse of the denominator.
        let det: Elem = a[0] * a[0] + BETA * a[1] * a[1];
        let invdet: Elem = det.inv();
        ExtElem([a[0] * invdet, -a[1] * invdet])
    }
    fn from_u64(x0: u64) -> Self {
        Self([Elem::new(x0), Elem::new(0)])
    }
    fn to_u32_words(&self) -> Vec<u32> {
        self.elems()
            .iter()
            .flat_map(|elem| elem.to_u32_words())
            .collect()
    }
    fn from_u32_words(val: &[u32]) -> Self {
        let iter = val.iter().step_by(2).zip(val.iter().skip(1).step_by(2));
        field::ExtElem::from_subelems(iter.map(|word| Elem::from_u32_words(&[*word.0, *word.1])))
    }
    fn is_valid(&self) -> bool {
        self.0 != Self::INVALID.0
    }
}
impl field::ExtElem for ExtElem {
    const EXT_SIZE: usize = EXT_SIZE;
    type SubElem = Elem;
    fn from_subfield(elem: &Elem) -> Self {
        Self::from([*elem, Elem::ZERO])
    }
    fn from_subelems(elems: impl IntoIterator<Item = Self::SubElem>) -> Self {
        let mut iter = elems.into_iter();
        let elem = Self::from([iter.next().unwrap(), iter.next().unwrap()]);
        assert!(
            iter.next().is_none(),
            "Extra elements passed to create element in extension field"
        );
        elem
    }
    /// Returns the subelements of a [Elem].
    fn subelems(&self) -> &[Elem] {
        &self.0
    }
}
impl From<[Elem; EXT_SIZE]> for ExtElem {
    /// Create field element from subfield element
    fn from(val: [Elem; EXT_SIZE]) -> Self {
        ExtElem(val)
    }
}
const BETA: Elem = Elem::new(11u64);
const NBETA: Elem = Elem::new(P - 11);
impl ExtElem {
    /// Explicitly construct an [ExtElem] from parts.
    pub const fn new(x0: Elem, x1: Elem) -> Self {
        Self([x0, x1])
    }
    /// Create a [ExtElem] from an [Elem].
    pub fn from_fp(x: Elem) -> Self {
        Self([x, Elem::new(0)])
    }
    /// Create a [ExtElem] from a raw integer.
    pub const fn from_u64(x0: u64) -> Self {
        Self([Elem::new(x0), Elem::new(0)])
    }
    /// Return the value zero.
    const fn zero() -> Self {
        Self::from_u64(0)
    }
    /// Return the value one.
    const fn one() -> Self {
        Self::from_u64(1)
    }
    /// Return the base field term of an [Elem].
    pub fn const_part(self) -> Elem {
        self.0[0]
    }
    /// Return [Elem] as a vector of base field values.
    pub fn elems(&self) -> &[Elem] {
        &self.0
    }
}
impl ops::Add for ExtElem {
    type Output = Self;
    /// Addition for Goldilocks [ExtElem]
    fn add(self, rhs: Self) -> Self {
        let mut lhs = self;
        lhs += rhs;
        lhs
    }
}
impl ops::AddAssign for ExtElem {
    /// Simple addition case for Goldilocks [ExtElem]
    fn add_assign(&mut self, rhs: Self) {
        for i in 0..self.0.len() {
            self.0[i] += rhs.0[i];
        }
    }
}
impl ops::Sub for ExtElem {
    type Output = Self;
    /// Subtraction for Goldilocks [ExtElem]
    fn sub(self, rhs: Self) -> Self {
        let mut lhs = self;
        lhs -= rhs;
        lhs
    }
}
impl ops::SubAssign for ExtElem {
    /// Simple subtraction case for Goldilocks [ExtElem]
    fn sub_assign(&mut self, rhs: Self) {
        for i in 0..self.0.len() {
            self.0[i] -= rhs.0[i];
        }
    }
}
impl ops::Mul<Elem> for ExtElem {
    type Output = Self;
    /// Multiplication for [ExtElem]
    fn mul(self, rhs: Elem) -> Self {
        let mut lhs = self;
        lhs *= rhs;
        lhs
    }
}
impl ops::MulAssign<Elem> for ExtElem {
    /// Simple multiplication case for Goldilocks [ExtElem]
    fn mul_assign(&mut self, rhs: Elem) {
        for i in 0..self.0.len() {
            self.0[i] *= rhs;
        }
    }
}
impl ops::Mul<ExtElem> for Elem {
    type Output = ExtElem;
    /// Multiplication of [Elem] by Goldilocks [ExtElem]
    fn mul(self, rhs: ExtElem) -> ExtElem {
        rhs * self
    }
}
// Multiply the polynomial representations, and then reduce modulo `x^2 - B`,
// which shifts terms with powers >= 2 back 2 and multiplies by `-Beta`. We
// could write this as a double loop with conditionals and hope it gets unrolled
// properly, but it's small enough to hand write.
impl ops::MulAssign for ExtElem {
    /// Simple multiplication case for Goldilocks [ExtElem]
    fn mul_assign(&mut self, rhs: Self) {
        // Rename the element arrays to something small for readability.
        let a = &self.0;
        let b = &rhs.0;
        self.0 = [a[0] * b[0] + NBETA * a[1] * b[1], a[0] * b[1] + a[1] * b[0]];
    }
}
impl ops::Mul for ExtElem {
    type Output = ExtElem;
    /// Multiplication for Goldilocks [ExtElem]
    fn mul(self, rhs: ExtElem) -> ExtElem {
        let mut lhs = self;
        lhs *= rhs;
        lhs
    }
}
impl ops::Neg for ExtElem {
    type Output = Self;
    /// Unary negation for Goldilocks [ExtElem]
    fn neg(self) -> Self {
        ExtElem::ZERO - self
    }
}
impl From<u64> for ExtElem {
    fn from(x: u64) -> Self {
        Self([Elem::from(x), Elem::ZERO])
    }
}
impl From<Elem> for ExtElem {
    fn from(x: Elem) -> Self {
        Self([x, Elem::ZERO])
    }
}
#[cfg(test)]
mod tests {
    use alloc::{vec, vec::Vec};
    use rand::{Rng, SeedableRng};
    use super::{field, Elem, ExtElem, P};
    use crate::field::Elem as FieldElem;
    #[test]
    /// Roots of unity tests common to all fields under test
    pub fn roots_of_unity() {
        field::tests::test_roots_of_unity::<Elem>();
    }
    #[test]
    pub fn field_ops() {
        field::tests::test_field_ops::<Elem>(P);
    }
    #[test]
    pub fn create_element_no_wrap() {
        let test_element = Elem::from(P - 1u64);
        let lhs: u64 = test_element.into();
        assert_eq!(lhs, P - 1u64);
    }
    #[test]
    pub fn create_element_field_wrap() {
        let test_element = Elem::from(P + 1u64);
        let lhs: u64 = test_element.into();
        assert_eq!(lhs, 1u64);
    }
    #[test]
    fn isa_field() {
        // Generate three field extension elements using randomly generated base field
        // values, and verify they meet the requirements of a field.
        let mut rng = rand::rngs::SmallRng::seed_from_u64(2);
        for _ in 0..1_000 {
            let a = ExtElem::random(&mut rng);
            let b = ExtElem::random(&mut rng);
            let c = ExtElem::random(&mut rng);
            // Addition + multiplication commute
            assert_eq!(a + b, b + a);
            assert_eq!(a * b, b * a);
            // Addition + multiplication are associative
            assert_eq!(a + (b + c), (a + b) + c);
            assert_eq!(a * (b * c), (a * b) * c);
            // Distributive property
            assert_eq!(a * (b + c), a * b + a * c);
            // Inverses
            if a != ExtElem::ZERO {
                assert_eq!(a.inv() * a, ExtElem::from(1));
            }
            assert_eq!(ExtElem::ZERO - a, -a);
            assert_eq!(a + (-a), ExtElem::ZERO);
        }
    }
    #[test]
    fn inv() {
        // Smoke test for inv
        assert_eq!(Elem(5).inv() * Elem(5), Elem(1));
    }
    #[test]
    fn pow() {
        // Smoke tests for pow
        assert_eq!(Elem(5).pow(0), Elem(1));
        assert_eq!(Elem(5).pow(1), Elem(5));
        assert_eq!(Elem(5).pow(2), Elem(25));
        // Mathematica says PowerMod[5, 1000, 2^64 - 2^32 + 1] == 1298979347292407023
        assert_eq!(Elem(5).pow(1000), Elem(1298979347292407023));
        assert_eq!(Elem(5).pow((P - 2) as usize) * Elem(5), Elem(1));
        assert_eq!(Elem(5).pow((P - 1) as usize), Elem(1));
    }
    #[test]
    fn check_addition_small_values() {
        // Test addition when 0 < a + b < P
        let fa = Elem::from(2u64);
        let fb = Elem::from(2u64);
        let a: u64 = fa.into();
        let b: u64 = fb.into();
        assert_eq!(fa + fb, Elem::from(a.wrapping_add(b)));
    }
    #[test]
    fn check_addition_subfield_wrap() {
        // Test for addition when P < a + b < 2^64
        let fa = Elem::from(P - 2u64);
        let fb = Elem::from(5u64);
        let a: u64 = fa.into();
        let b: u64 = fb.into();
        assert_eq!(fa + fb, Elem::from(a.wrapping_add(b)));
    }
    #[test]
    fn check_addition_u64_wrap() {
        // Test for addition when 0 < (a + b) mod 2^64 < P
        let fa = Elem::from(P - 1u64);
        let fb = Elem::from(P - 1u64);
        let a: u64 = fa.into();
        let b: u64 = fb.into();
        assert_eq!(
            fa + fb,
            Elem::from(((a as u128 + b as u128) % P as u128) as u64)
        );
    }
    #[test]
    fn check_subtraction_small_values() {
        // 0 < a - b < P  (when a > b)
        let fa: Elem = Elem::from(P - 2u64);
        let fb: Elem = Elem::from(3u64);
        let a: u64 = fa.into();
        let b: u64 = fb.into();
        assert_eq!(
            fa - fb,
            Elem::from(((a as u128 - b as u128) % (P as u128)) as u64),
        );
    }
    #[test]
    fn check_subtraction_u64_wrap() {
        // Checks subtraction for `a-b` when P < (a - b) mod 2^64 < 2^64
        // (when b < a, but a - b doesn't wrap all the way into our field)
        let fa: Elem = Elem::from(1u64);
        let fb: Elem = Elem::from(2u64);
        let a: u64 = fa.into();
        let b: u64 = fb.into();
        assert_eq!(
            fa - fb,
            Elem::from(((a as u128 + (P - b) as u128) % (P as u128)) as u64),
            "Error subtracting `{} - {}`",
            a,
            b
        );
    }
    #[test]
    fn check_subtraction_subfield_wrap() {
        // Unlike baby bear, in which addition can't overflow a u64,
        // here A + (P - B) is greater than 2^64,
        // so this checks which modulus is being respected when
        // P < (a - b) mod 2^64 < 2^64
        let fa: Elem = Elem::from(P - 1u64);
        let fb: Elem = Elem::from(P / 2u64);
        let a: u64 = fa.into();
        let b: u64 = fb.into();
        assert_eq!(
            fa - fb,
            Elem::from(((a as u128 + (P - b) as u128) % (P as u128)) as u64),
            "Error subtracting `{} - {}`",
            a,
            b
        );
    }
    #[test]
    fn check_multiplication_small_values() {
        // 0 < a * b < P
        // Simple case of o u64 overflow
        let fa = Elem::from(2u64);
        let fb = Elem::from(3u64);
        let a: u64 = fa.into();
        let b: u64 = fb.into();
        assert_eq!(
            fa * fb,
            Elem::from(((a as u128 * b as u128) % P as u128) as u64),
            "Error multiplying `{} * {}`",
            a,
            b
        );
    }
    #[test]
    fn check_multiplication_subfield_wrap() {
        // P < a * b < 2^64
        // We expect the result mod P, but there's no u64 overflow
        let fa = Elem::from(2u64 ^ 30);
        let fb = Elem::from(2u64 ^ 34 - 1u64);
        let a: u64 = fa.into();
        let b: u64 = fb.into();
        assert_eq!(
            fa * fb,
            Elem::from(((a as u128 * b as u128) % P as u128) as u64),
            "Error multiplying `{} * {}`",
            a,
            b
        );
    }
    #[test]
    fn compare_core_operations_to_simple_mod_operations() {
        // Compare core operations against simple % P implementations
        let mut rng = rand::rngs::SmallRng::seed_from_u64(2);
        for _ in 0..1000 {
            let fa = Elem::random(&mut rng);
            let fb = Elem::random(&mut rng);
            let a: u64 = fa.into();
            let b: u64 = fb.into();
            assert_eq!(
                fa + fb,
                Elem::from(((a as u128 + b as u128) % P as u128) as u64),
                "Error adding `{} + {}`",
                a,
                b
            );
            // This is a workaround that doesn't need to exist for baby bear
            // because it doesn't overflow u64 under addition. Here, we could have P - b + a
            // either overflow or wrap under u64.
            let diff = if a < b {
                ((a as u128 + (P - b) as u128) % (P as u128)) as u64
            } else {
                ((a as u128 - b as u128) % (P as u128)) as u64
            };
            assert_eq!(
                fa - fb,
                Elem::from(diff),
                "Error subtracting `{} - {}`",
                a,
                b
            );
            assert_eq!(
                fa * fb,
                Elem::from(((a as u128 * b as u128) % P as u128) as u64),
                "Error multiplying `{} * {}`",
                a,
                b
            );
        }
    }
    #[test]
    fn u32s_conversions() {
        let mut rng = rand::rngs::SmallRng::seed_from_u64(2);
        for _ in 0..100 {
            let elem = Elem::random(&mut rng);
            assert_eq!(elem, Elem::from_u32_words(&elem.to_u32_words()));
            let vec: Vec<u32> = vec![rng.gen(), rng.gen()];
            assert_eq!(vec, Elem::from_u32_words(&vec).to_u32_words());
        }
        for _ in 0..100 {
            let elem = ExtElem::random(&mut rng);
            assert_eq!(elem, ExtElem::from_u32_words(&elem.to_u32_words()));
            let vec: Vec<u32> = vec![rng.gen(), rng.gen(), rng.gen(), rng.gen()];
            assert_eq!(vec, ExtElem::from_u32_words(&vec).to_u32_words());
        }
    }
}