1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
// Copyright 2024 RISC Zero, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
extern crate alloc;
use alloc::vec::Vec;
use core::{borrow::Borrow, mem::size_of};
use risc0_zkp::core::{
digest::{Digest, DIGEST_BYTES},
hash::sha::Sha256,
};
/// Defines a collision resistant hash for the typed and structured data.
pub trait Digestible {
/// Calculate a collision resistant hash for the typed and structured data.
fn digest<S: Sha256>(&self) -> Digest;
}
impl Digestible for [u8] {
fn digest<S: Sha256>(&self) -> Digest {
*S::hash_bytes(self)
}
}
impl Digestible for Vec<u8> {
fn digest<S: Sha256>(&self) -> Digest {
*S::hash_bytes(self)
}
}
impl<D: Digestible> Digestible for [D] {
/// A default incremental hashing algorithm for a slice of Digestible elements.
///
/// This hashing routine may not be appropriate for add use cases. In particular, it is not a
/// PRF and cannot be used as a MAC. Given a digest of a list, anyone can compute the digest of
/// that list with additional elements appended to the front of the list. It also does not
/// domain separate typed data, and the digest of an empty slice is the zero digest.
fn digest<S: Sha256>(&self) -> Digest {
self.iter().rfold(Digest::ZERO, |accum, item| {
*S::hash_bytes(&[accum.as_bytes(), item.digest::<S>().as_bytes()].concat())
})
}
}
impl<T: Digestible> Digestible for Option<T> {
fn digest<S: Sha256>(&self) -> Digest {
match self {
Some(val) => val.digest::<S>(),
None => Digest::ZERO,
}
}
}
/// A struct hashing routine, permitting tree-like opening of fields.
///
/// Used for hashing of the receipt claim, and in the recursion predicates.
pub fn tagged_struct<S: Sha256>(tag: &str, down: &[impl Borrow<Digest>], data: &[u32]) -> Digest {
let tag_digest: Digest = *S::hash_bytes(tag.as_bytes());
#[allow(clippy::manual_slice_size_calculation)]
let mut all = Vec::<u8>::with_capacity(
DIGEST_BYTES * (down.len() + 1) + size_of::<u32>() * data.len() + size_of::<u16>(),
);
all.extend_from_slice(tag_digest.as_bytes());
for digest in down {
all.extend_from_slice(digest.borrow().as_ref());
}
for word in data.iter().copied() {
all.extend_from_slice(&word.to_le_bytes());
}
let down_count: u16 = down
.len()
.try_into()
.expect("struct defined with more than 2^16 fields");
all.extend_from_slice(&down_count.to_le_bytes());
*S::hash_bytes(&all)
}
/// A list hashing routine, permitting iterative opening over elements.
///
/// Used for hashing of the receipt claim assumptions list, and in the recursion
/// predicates.
pub fn tagged_iter<S: Sha256>(
tag: &str,
iter: impl DoubleEndedIterator<Item = impl Borrow<Digest>>,
) -> Digest {
iter.rfold(Digest::ZERO, |list_digest, elem| {
tagged_list_cons::<S>(tag, elem.borrow(), &list_digest)
})
}
/// A list hashing routine, permitting iterative opening over elements.
///
/// Used for hashing of the receipt claim assumptions list, and in the recursion
/// predicates.
pub fn tagged_list<S: Sha256>(tag: &str, list: &[impl Borrow<Digest>]) -> Digest {
tagged_iter::<S>(tag, list.iter().map(|x| x.borrow()))
}
/// Calculate the hash resulting from adding one element to a [tagged_list]
/// digest.
///
/// This function logically pushes the element `head` onto the front of the
/// list.
///
/// ```rust
/// use risc0_zkp::core::hash::sha::{cpu::Impl, Sha256};
/// use risc0_binfmt::{tagged_list, tagged_list_cons};
///
/// let [a, b, c] = [
/// *Impl::hash_bytes(b"a".as_slice()),
/// *Impl::hash_bytes(b"b".as_slice()),
/// *Impl::hash_bytes(b"c".as_slice()),
/// ];
/// assert_eq!(
/// tagged_list::<Impl>("tag", &[a, b, c]),
/// tagged_list_cons::<Impl>("tag", &a, &tagged_list::<Impl>("tag", &[b, c])),
/// );
/// ```
pub fn tagged_list_cons<S: Sha256>(tag: &str, head: &Digest, tail: &Digest) -> Digest {
tagged_struct::<S>(tag, &[head, tail], &[])
}
#[cfg(test)]
mod tests {
use risc0_zkp::core::hash::sha::cpu;
use super::{tagged_struct, Digest};
#[test]
fn test_tagged_struct() {
let digest1 = tagged_struct::<cpu::Impl>("foo", &Vec::<Digest>::new(), &[1, 2013265920, 3]);
let digest2 = tagged_struct::<cpu::Impl>("bar", &[digest1, digest1], &[2013265920, 5]);
let digest3 = tagged_struct::<cpu::Impl>(
"baz",
&[digest1, digest2, digest1],
&[6, 7, 2013265920, 9, 10],
);
println!("digest = {:?}", digest3);
assert_eq!(
digest3.to_string(),
"9ff20cc6d365efa2af09181772f49013d05cdee6da896851614cae23aa5dd442"
);
}
}