1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
//! Chord algorithm implement.
#![warn(missing_docs)]
use std::str::FromStr;
use std::sync::Arc;
use std::sync::Mutex;
use std::sync::MutexGuard;
use async_trait::async_trait;
use num_bigint::BigUint;
use serde::Deserialize;
use serde::Serialize;
use super::did::BiasId;
use super::successor::SuccessorSeq;
use super::types::Chord;
use super::types::ChordStorage;
use super::types::ChordStorageCache;
use super::types::ChordStorageSync;
use super::types::CorrectChord;
use super::vnode::VNodeOperation;
use super::vnode::VirtualNode;
use super::FingerTable;
use crate::dht::Did;
use crate::dht::LiveDid;
use crate::dht::SuccessorReader;
use crate::dht::SuccessorWriter;
use crate::error::Error;
use crate::error::Result;
use crate::storage::KvStorageInterface;
use crate::storage::MemStorage;
/// `VNodeStorage` is the type accepted by `PeerRing::new_with_storage`.
/// It's used to store [VirtualNode]s in a storage media provided by user.
#[cfg(feature = "wasm")]
pub type VNodeStorage = Box<dyn KvStorageInterface<VirtualNode>>;
/// `VNodeStorage` is the type accepted by `PeerRing::new_with_storage`.
/// It's used to store [VirtualNode]s in a storage media provided by user.
#[cfg(not(feature = "wasm"))]
pub type VNodeStorage = Box<dyn KvStorageInterface<VirtualNode> + Send + Sync>;
/// PeerRing is used to help a node interact with other nodes.
/// All nodes in rings network form a clockwise ring in the order of Did.
/// This struct takes its name from that.
/// PeerRing implemented [Chord] algorithm.
/// PeerRing implemented [ChordStorage] protocol.
pub struct PeerRing {
/// The did of current node.
pub did: Did,
/// [FingerTable] help node to find successor quickly.
pub finger: Arc<Mutex<FingerTable>>,
/// The next node on the ring.
/// The [SuccessorSeq] may contain multiple node dids for fault tolerance.
/// The min did should be same as the first element in finger table.
pub successor_seq: SuccessorSeq,
/// The did of previous node on the ring.
pub predecessor: Arc<Mutex<Option<Did>>>,
/// Local storage for [ChordStorage].
pub storage: VNodeStorage,
/// Local cache for [ChordStorage].
pub cache: VNodeStorage,
}
/// Type alias is just for making the code easy to read.
type Target = Did;
/// `PeerRing` use this to describe the result of [Chord] algorithm. Sometimes it's a
/// direct result, sometimes it's an action that is continued externally.
#[derive(Clone, Debug, PartialEq)]
pub enum PeerRingAction {
/// No result, the whole manipulation is done internally.
None,
/// Found some VirtualNode.
SomeVNode(VirtualNode),
/// Found some node.
Some(Did),
/// Trigger a remote action.
RemoteAction(Target, RemoteAction),
/// Trigger multiple remote actions.
MultiActions(Vec<PeerRingAction>),
}
/// Some of the process needs to be done remotely. This enum is used to describe that.
/// Don't worry about leaving the context. There will be callback machinisim externally
/// that will invoke appropriate methods in `PeerRing` to continue the process.
///
/// To avoid ambiguity, in the following comments, `did_a` is the Did declared in
/// [PeerRingAction]. Other dids are the fields declared in this [RemoteAction].
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum RemoteAction {
/// Need `did_a` to find `did_b`.
FindSuccessor(Did),
/// Need `did_a` to find virtual node `did_b`.
FindVNode(Did),
/// Need `did_a` to find VirtualNode for operating.
FindVNodeForOperate(VNodeOperation),
/// Let `did_a` [notify](Chord::notify) `did_b`.
Notify(Did),
/// Let `did_a` sync data with it's successor.
SyncVNodeWithSuccessor(Vec<VirtualNode>),
/// Need `did_a` to find `did_b` then send back with `for connect` flag.
FindSuccessorForConnect(Did),
/// Need `did_a` to find `did_b` then send back with `for finger table fixing` flag.
FindSuccessorForFix(Did),
// TODO: The check_processor method is not using. Cannot give correct description.
/// Check predecessor
CheckPredecessor,
/// Fetch successor_list from successor
QueryForSuccessorList,
/// Fetch successor_list and pred from successor
QueryForSuccessorListAndPred,
/// Try connect to a Node
TryConnect,
}
/// Information about successor and predecessor
#[derive(Debug, PartialEq, Eq, Deserialize, Serialize, Clone)]
pub struct TopoInfo {
/// Successor list
pub successors: Vec<Did>,
/// Predecessor
pub predecessor: Option<Did>,
}
impl TryFrom<&PeerRing> for TopoInfo {
type Error = Error;
fn try_from(dht: &PeerRing) -> Result<TopoInfo> {
let successors = dht.successors().list()?;
let predecessor = *dht.lock_predecessor()?;
Ok(TopoInfo {
successors,
predecessor,
})
}
}
impl PeerRingAction {
/// Returns `true` if the action is a [PeerRingAction::None] value.
pub fn is_none(&self) -> bool {
if let Self::None = self {
return true;
}
false
}
/// Returns `true` if the action is a [PeerRingAction::Some] value.
pub fn is_some(&self) -> bool {
if let Self::Some(_) = self {
return true;
}
false
}
/// Returns `true` if the action is a [PeerRingAction::SomeVNode] value.
pub fn is_some_vnode(&self) -> bool {
if let Self::SomeVNode(_) = self {
return true;
}
false
}
/// Returns `true` if the action is a [PeerRingAction::RemoteAction] value.
pub fn is_remote(&self) -> bool {
if let Self::RemoteAction(..) = self {
return true;
}
false
}
/// Returns `true` if the action is a [PeerRingAction::MultiActions] value.
pub fn is_multi(&self) -> bool {
if let Self::MultiActions(..) = self {
return true;
}
false
}
}
impl From<Vec<PeerRingAction>> for PeerRingAction {
fn from(acts: Vec<PeerRingAction>) -> Self {
if !acts.is_empty() {
Self::MultiActions(acts)
} else {
Self::None
}
}
}
impl PeerRing {
/// Same as new with config, but with a given storage.
pub fn new_with_storage(did: Did, succ_max: u8, storage: VNodeStorage) -> Self {
Self {
successor_seq: SuccessorSeq::new(did, succ_max),
predecessor: Arc::new(Mutex::new(None)),
// for Eth address, it's 160
finger: Arc::new(Mutex::new(FingerTable::new(did, 160))),
storage,
cache: Box::new(MemStorage::new()),
did,
}
}
/// Return successor sequence. This function is deprecated, please use [chord.successors] instead.
#[deprecated]
pub fn lock_successor(&self) -> Result<SuccessorSeq> {
Ok(self.successor_seq.clone())
}
/// Return successor sequence
pub fn successors(&self) -> SuccessorSeq {
self.successor_seq.clone()
}
/// Lock and return MutexGuard of finger table.
pub fn lock_finger(&self) -> Result<MutexGuard<FingerTable>> {
self.finger.lock().map_err(|_| Error::DHTSyncLockError)
}
/// Lock and return MutexGuard of predecessor.
pub fn lock_predecessor(&self) -> Result<MutexGuard<Option<Did>>> {
self.predecessor.lock().map_err(|_| Error::DHTSyncLockError)
}
/// Remove a node from finger table.
/// Also remove it from successor sequence.
/// If successor_seq become empty, try setting the closest node to it.
pub fn remove(&self, did: Did) -> Result<()> {
let mut finger = self.lock_finger()?;
let successor = self.successors();
let mut predecessor = self.lock_predecessor()?;
if let Some(pid) = *predecessor {
if pid == did {
*predecessor = None;
}
}
finger.remove(did);
successor.remove(did)?;
if successor.is_empty()? {
if let Some(x) = finger.first() {
successor.update(x)?;
}
}
Ok(())
}
/// Calculate bias of the Did on the ring.
pub fn bias(&self, did: Did) -> BiasId {
BiasId::new(self.did, did)
}
}
impl Chord<PeerRingAction> for PeerRing {
/// Join a ring containing a node identified by `did`.
/// This method is usually invoked to maintain successor sequence and finger table
/// after connect to another node.
///
/// This method will return a [RemoteAction::FindSuccessorForConnect] to the caller.
/// The caller will send it to the node identified by `did`, and let the node find
/// the successor of current node and make current node connect to that successor.
fn join(&self, did: Did) -> Result<PeerRingAction> {
if did == self.did {
return Ok(PeerRingAction::None);
}
let mut finger = self.lock_finger()?;
finger.join(did);
// Always try update
self.successors().update(did)?;
Ok(PeerRingAction::RemoteAction(
did,
RemoteAction::FindSuccessorForConnect(self.did),
))
}
/// Find the successor of a Did.
/// May return a remote action for the successor is recorded in another node.
fn find_successor(&self, did: Did) -> Result<PeerRingAction> {
let successor = self.successors();
let finger = self.lock_finger()?;
let succ = {
if successor.is_empty()? || self.bias(did) <= self.bias(successor.min()?) {
// If the did is closer to self than successor, return successor as the
// successor of that did.
Ok(PeerRingAction::Some(successor.min()?))
} else {
// Otherwise, find the closest preceding node and ask it to find the successor.
let closest_predecessor = finger.closest_predecessor(did);
Ok(PeerRingAction::RemoteAction(
closest_predecessor,
RemoteAction::FindSuccessor(did),
))
}
};
tracing::debug!(
"find_successor: self: {}, did: {}, successor: {:?}, result: {:?}",
self.did,
did,
successor,
succ
);
succ
}
/// Handle notification from a node that thinks a did is the predecessor of current node.
/// The `did` in parameters is the Did of that predecessor.
/// If that node is closer to current node or current node has no predecessor, set it to the did.
/// This method will return current predecessor after setting.
fn notify(&self, did: Did) -> Result<Did> {
let mut predecessor = self.lock_predecessor()?;
match *predecessor {
Some(pre) => {
// If the did is closer to self than predecessor, set it to the predecessor.
// Otherwise tell the real predecessor back.
if self.bias(pre) < self.bias(did) {
*predecessor = Some(did);
Ok(did)
} else {
Ok(pre)
}
}
None => {
// Self has no predecessor, set it to the did directly.
*predecessor = Some(did);
Ok(did)
}
}
}
/// Fix finger table by finding the successor for each finger.
/// According to the paper, this method should be called periodically.
/// According to the paper, only one finger should be fixed at a time.
fn fix_fingers(&self) -> Result<PeerRingAction> {
let mut fix_finger_index = self.lock_finger()?.fix_finger_index;
// Only one finger should be fixed at a time.
fix_finger_index = (fix_finger_index + 1) % 160;
// Get finger did.
let finger_did = Did::from(BigUint::from(2u16).pow(fix_finger_index as u32));
// Caution here that there are also locks in find_successor.
// You cannot lock finger table before calling find_successor.
// Have to lock_finger in each branch of the match.
match self.find_successor(finger_did) {
Ok(res) => match res {
PeerRingAction::Some(v) => {
let mut finger = self.lock_finger()?;
finger.fix_finger_index = fix_finger_index;
finger.set_fix(v);
Ok(PeerRingAction::None)
}
PeerRingAction::RemoteAction(
closest_predecessor,
RemoteAction::FindSuccessor(finger_did),
) => {
let mut finger = self.lock_finger()?;
finger.fix_finger_index = fix_finger_index;
Ok(PeerRingAction::RemoteAction(
closest_predecessor,
RemoteAction::FindSuccessorForFix(finger_did),
))
}
_ => {
tracing::error!("Invalid PeerRing Action");
Err(Error::PeerRingInvalidAction)
}
},
Err(e) => {
let mut finger = self.lock_finger()?;
finger.fix_finger_index = fix_finger_index;
Err(Error::PeerRingFindSuccessor(e.to_string()))
}
}
}
}
#[cfg_attr(feature = "wasm", async_trait(?Send))]
#[cfg_attr(not(feature = "wasm"), async_trait)]
impl<const REDUNDANT: u16> ChordStorage<PeerRingAction, REDUNDANT> for PeerRing {
/// Look up a VirtualNode by its Did.
/// Always finds resource by finger table, ignoring the local cache.
/// If the `vid` is between current node and its successor, its resource should be
/// stored in current node.
async fn vnode_lookup(&self, vid: Did) -> Result<PeerRingAction> {
let mut ret = vec![];
for vid in vid.rotate_affine(REDUNDANT) {
let maybe_act = match self.find_successor(vid) {
// Resource should be stored in current node.
Ok(PeerRingAction::Some(succ)) => match self.storage.get(&vid.to_string()).await {
Ok(Some(v)) => Ok(PeerRingAction::SomeVNode(v)),
Ok(None) => {
tracing::debug!(
"Cannot find vnode in local storage, try to query from successor"
);
// If cannot find and has successor, try to query it from successor.
// This is useful when the node is just joined and has not stabilized yet.
if succ == self.did {
Ok(PeerRingAction::None)
} else {
Ok(PeerRingAction::RemoteAction(
succ,
RemoteAction::FindVNode(vid),
))
}
}
Err(_) => Ok(PeerRingAction::None),
},
// Resource is stored in other nodes.
// Return an action to describe how to find it.
Ok(PeerRingAction::RemoteAction(n, RemoteAction::FindSuccessor(id))) => {
Ok(PeerRingAction::RemoteAction(n, RemoteAction::FindVNode(id)))
}
Ok(a) => Err(Error::PeerRingUnexpectedAction(a)),
Err(e) => Err(e),
};
if let Ok(act) = maybe_act {
if act.is_remote() {
ret.push(act.clone());
} else {
// If found vnode, break and return directly
if act.is_some_vnode() {
return Ok(act);
}
}
}
}
Ok(ret.into())
}
/// Handle [VNodeOperation] if the target vnode between current node and the
/// successor of current node, otherwise find the responsible node and return
/// as Action.
async fn vnode_operate(&self, op: VNodeOperation) -> Result<PeerRingAction> {
let vid = op.did()?;
let mut ret = vec![];
for vid in vid.rotate_affine(REDUNDANT) {
let maybe_act = match self.find_successor(vid) {
// `vnode` should be on current node.
Ok(PeerRingAction::Some(_)) => {
let this = if let Ok(Some(this)) = self.storage.get(&vid.to_string()).await {
Ok(this)
} else {
op.clone().gen_default_vnode()
}?;
let vnode = this.operate(op.clone())?;
self.storage.put(&vid.to_string(), &vnode).await?;
Ok(PeerRingAction::None)
}
// `vnode` should be on other nodes.
// Return an action to describe how to store it.
Ok(PeerRingAction::RemoteAction(n, RemoteAction::FindSuccessor(_))) => Ok(
PeerRingAction::RemoteAction(n, RemoteAction::FindVNodeForOperate(op.clone())),
),
Ok(a) => Err(Error::PeerRingUnexpectedAction(a)),
Err(e) => Err(e),
};
if let Ok(act) = maybe_act {
if act.is_remote() {
ret.push(act);
}
}
}
Ok(ret.into())
}
}
#[cfg_attr(feature = "wasm", async_trait(?Send))]
#[cfg_attr(not(feature = "wasm"), async_trait)]
impl ChordStorageSync<PeerRingAction> for PeerRing {
/// When the successor of a node is updated, it needs to check if there are
/// `VirtualNode`s that are no longer between current node and `new_successor`,
/// and sync them to the new successor.
async fn sync_vnode_with_successor(&self, new_successor: Did) -> Result<PeerRingAction> {
let mut data = Vec::<VirtualNode>::new();
let all_items: Vec<(String, VirtualNode)> = self.storage.get_all().await?;
// Pop out all items that are not between current node and `new_successor`.
for (vid_str, vnode) in all_items.iter() {
let vid = Did::from_str(vid_str)?;
if self.bias(vid) > self.bias(new_successor)
&& self.storage.remove(vid_str).await.is_ok()
{
data.push(vnode.clone());
}
}
if !data.is_empty() {
Ok(PeerRingAction::RemoteAction(
new_successor,
RemoteAction::SyncVNodeWithSuccessor(data), // TODO: This might be too large.
))
} else {
Ok(PeerRingAction::None)
}
}
}
#[cfg_attr(feature = "wasm", async_trait(?Send))]
#[cfg_attr(not(feature = "wasm"), async_trait)]
impl ChordStorageCache<PeerRingAction> for PeerRing {
/// Cache fetched `vnode` locally.
async fn local_cache_put(&self, vnode: VirtualNode) -> Result<()> {
self.cache.put(&vnode.did.to_string(), &vnode).await
}
/// Get vnode from local cache.
async fn local_cache_get(&self, vid: Did) -> Result<Option<VirtualNode>> {
self.cache.get(&vid.to_string()).await
}
}
#[cfg_attr(feature = "wasm", async_trait(?Send))]
#[cfg_attr(not(feature = "wasm"), async_trait)]
impl CorrectChord<PeerRingAction> for PeerRing {
/// When Chord have a new successor, ask the new successor for successor list
async fn update_successor(&self, did: impl LiveDid) -> Result<PeerRingAction> {
let is_live = did.live().await;
if !is_live {
return Ok(PeerRingAction::RemoteAction(
did.into(),
RemoteAction::TryConnect,
));
}
if let Some(new_succ) = self.successors().update(did.into())? {
Ok(PeerRingAction::RemoteAction(
new_succ,
RemoteAction::QueryForSuccessorList,
))
} else {
Ok(PeerRingAction::None)
}
}
async fn extend_successor(&self, dids: &[impl LiveDid]) -> Result<PeerRingAction> {
let mut ret: Vec<PeerRingAction> = vec![];
for did in dids {
if let PeerRingAction::RemoteAction(r, act) = self.update_successor(did.clone()).await?
{
ret.push(PeerRingAction::RemoteAction(r, act))
}
}
Ok(PeerRingAction::MultiActions(ret))
}
/// Join Operation in the paper.
/// Zave's work differs from the original Chord paper in that it requires
/// a newly joined node to synchronize its successors from remote nodes.
async fn join_then_sync(&self, did: impl LiveDid) -> Result<PeerRingAction> {
let is_live = did.live().await;
if !is_live {
return Ok(PeerRingAction::None);
}
let mut ret: Vec<PeerRingAction> = vec![];
let succ_act = self.update_successor(did.clone()).await?;
if succ_act.is_remote() {
ret.push(succ_act)
}
let join_act = self.join(did.into())?;
ret.push(join_act);
Ok(PeerRingAction::MultiActions(ret))
}
/// TODO: Please check this function and make sure it is correct.
/// TODO: Please comment this with clear description.
/// Rectify Operation in the paper.
fn rectify(&self, pred: Did) -> Result<()> {
self.notify(pred)?;
Ok(())
}
/// Pre-Stabilize Operation:
/// Before stabilizing, the node should query its first successor for TopoInfo.
/// If there are no successors, return PeerRingAction::None.
fn pre_stabilize(&self) -> Result<PeerRingAction> {
let successor = self.successors();
if successor.is_empty()? {
return Ok(PeerRingAction::None);
}
let head = successor.min()?;
Ok(PeerRingAction::RemoteAction(
head,
RemoteAction::QueryForSuccessorListAndPred,
))
}
/// Stabilize Operation:
/// Perform stabilization for the successor list.
fn stabilize(&self, info: TopoInfo) -> Result<PeerRingAction> {
let mut ret = vec![];
let successors = self.successors();
let succ_len = info.successors.len();
let but_last = &info.successors[..succ_len - 1].to_vec();
if let Some(new_succ) = info.predecessor {
successors.update(new_succ)?;
}
successors.extend(but_last)?;
// Check if the new successor is between new_succ and head(successors).
if let Some(new_succ) = info.predecessor {
if self.bias(new_succ) < self.bias(successors.min()?) {
// If new_succ is between self.did and the head of the successor list,
// query newSucc for its successor list.
ret.push(PeerRingAction::RemoteAction(
new_succ,
RemoteAction::QueryForSuccessorList,
));
}
// Notify the node's minimum successor of its existence.
ret.push(PeerRingAction::RemoteAction(
successors.min()?,
RemoteAction::Notify(self.did),
));
}
Ok(PeerRingAction::MultiActions(ret))
}
/// A function to provide topological information about the chord.
fn topo_info(&self) -> Result<TopoInfo> {
self.try_into()
}
}
#[cfg(not(feature = "wasm"))]
#[cfg(test)]
mod tests {
use std::iter::repeat;
use std::str::FromStr;
use super::*;
use crate::ecc::SecretKey;
use crate::tests::default::gen_sorted_dht;
#[tokio::test]
async fn test_chord_finger() -> Result<()> {
// Setup did a, b, c, d in a clockwise order.
let a = Did::from_str("0x00E807fcc88dD319270493fB2e822e388Fe36ab0").unwrap();
let b = Did::from_str("0x119999cf1046e68e36E1aA2E0E07105eDDD1f08E").unwrap();
let c = Did::from_str("0xccffee254729296a45a3885639AC7E10F9d54979").unwrap();
let d = Did::from_str("0xffffee254729296a45a3885639AC7E10F9d54979").unwrap();
// This assertion tells you the order of a, b, c, d on the ring.
// Note that this vec only describes the order, not the absolute position.
// Since they are all on the ring, you cannot say a is the first element or d is
// the last. You can only describe their bias based on the same node and a
// clockwise order.
//
// a --> b --> c --> d
// ^ |
// |-----------------|
//
let mut seq = vec![a, b, c, d];
seq.sort();
assert_eq!(seq, vec![a, b, c, d]);
// Setup node_a and ensure its successor sequence and finger table is empty.
let node_a = PeerRing::new_with_storage(a, 3, Box::new(MemStorage::new()));
assert!(node_a.successors().is_empty()?);
assert!(node_a.lock_finger()?.is_empty());
// Test a node won't set itself to successor sequence and finger table.
assert_eq!(node_a.join(a)?, PeerRingAction::None);
assert!(node_a.successors().is_empty()?);
assert!(node_a.lock_finger()?.is_empty());
// Test join ring with node_b.
// We don't need to setup node_b here, we just use its did.
let result = node_a.join(b)?;
// After join, node_a should ask node_b to find its successor on the ring for
// connecting.
assert_eq!(
result,
PeerRingAction::RemoteAction(b, RemoteAction::FindSuccessorForConnect(a))
);
// This assertion tells you the position of node_b on the ring.
// Hint: The Did type is a 160-bit unsigned integer.
assert!(BigUint::from(b) > BigUint::from(2u16).pow(156));
assert!(BigUint::from(b) < BigUint::from(2u16).pow(157));
// After join, the finger table of node_a should be like:
// [b] * 157 + [None] * 3
let mut expected_finger_list = repeat(Some(b)).take(157).collect::<Vec<_>>();
expected_finger_list.extend(repeat(None).take(3));
assert_eq!(node_a.lock_finger()?.list(), &expected_finger_list);
// After join, the successor sequence of node_a should be [b].
assert_eq!(node_a.successors().list()?, vec![b]);
// Test repeated join.
node_a.join(b)?;
assert_eq!(node_a.lock_finger()?.list(), &expected_finger_list);
assert_eq!(node_a.successors().list()?, vec![b]);
node_a.join(b)?;
assert_eq!(node_a.lock_finger()?.list(), &expected_finger_list);
assert_eq!(node_a.successors().list()?, vec![b]);
// Test join ring with node_c.
// We don't need to setup node_c here, we just use its did.
let result = node_a.join(c)?;
// Again, after join, node_a should ask node_c to find its successor on the ring
// for connecting.
assert_eq!(
result,
PeerRingAction::RemoteAction(c, RemoteAction::FindSuccessorForConnect(a))
);
// This assertion tells you the position of node_c on the ring.
// Hint: The Did type is a 160-bit unsigned integer.
assert!(BigUint::from(c) > BigUint::from(2u16).pow(159));
assert!(BigUint::from(c) < BigUint::from(2u16).pow(160));
// After join, the finger table of node_a should be like:
// [b] * 157 + [c] * 3
let mut expected_finger_list = repeat(Some(b)).take(157).collect::<Vec<_>>();
expected_finger_list.extend(repeat(Some(c)).take(3));
assert_eq!(node_a.lock_finger()?.list(), &expected_finger_list);
// After join, the successor sequence of node_a should be [b, c].
// Because although node_b is closer to node_a, the sequence is not full.
assert_eq!(node_a.successors().list()?, vec![b, c]);
// When try to find_successor of node_d, node_a will send query to node_c.
assert_eq!(
node_a.find_successor(d).unwrap(),
PeerRingAction::RemoteAction(c, RemoteAction::FindSuccessor(d))
);
// When try to find_successor of node_c, node_a will send query to node_b.
assert_eq!(
node_a.find_successor(c).unwrap(),
PeerRingAction::RemoteAction(b, RemoteAction::FindSuccessor(c))
);
// Since the test above is clockwise, we need to test anti-clockwise situation.
let node_a = PeerRing::new_with_storage(a, 3, Box::new(MemStorage::new()));
// Test join ring with node_c.
assert_eq!(
node_a.join(c)?,
PeerRingAction::RemoteAction(c, RemoteAction::FindSuccessorForConnect(a))
);
let expected_finger_list = repeat(Some(c)).take(160).collect::<Vec<_>>();
assert_eq!(node_a.lock_finger()?.list(), &expected_finger_list);
assert_eq!(node_a.successors().list()?, vec![c]);
// Test join ring with node_b.
assert_eq!(
node_a.join(b)?,
PeerRingAction::RemoteAction(b, RemoteAction::FindSuccessorForConnect(a))
);
let mut expected_finger_list = repeat(Some(b)).take(157).collect::<Vec<_>>();
expected_finger_list.extend(repeat(Some(c)).take(3));
assert_eq!(node_a.lock_finger()?.list(), &expected_finger_list);
assert_eq!(node_a.successors().list()?, vec![b, c]);
// Test join over half ring.
let node_d = PeerRing::new_with_storage(d, 1, Box::new(MemStorage::new()));
assert_eq!(
node_d.join(a)?,
PeerRingAction::RemoteAction(a, RemoteAction::FindSuccessorForConnect(d))
);
// This assertion tells you that node_a is over 2^151 far away from node_d.
// And node_a is also less than 2^152 far away from node_d.
assert!(d + Did::from(BigUint::from(2u16).pow(151)) < a);
assert!(d + Did::from(BigUint::from(2u16).pow(152)) > a);
// After join, the finger table of node_d should be like:
// [a] * 152 + [None] * 8
let mut expected_finger_list = repeat(Some(a)).take(152).collect::<Vec<_>>();
expected_finger_list.extend(repeat(None).take(8));
assert_eq!(node_d.lock_finger()?.list(), &expected_finger_list);
// After join, the successor sequence of node_a should be [a].
assert_eq!(node_d.successors().list()?, vec![a]);
// Test join ring with node_b.
assert_eq!(
node_d.join(b)?,
PeerRingAction::RemoteAction(b, RemoteAction::FindSuccessorForConnect(d))
);
// This assertion tells you that node_b is over 2^156 far away from node_d.
// And node_b is also less than 2^157 far away from node_d.
assert!(d + Did::from(BigUint::from(2u16).pow(156)) < b);
assert!(d + Did::from(BigUint::from(2u16).pow(157)) > b);
// After join, the finger table of node_d should be like:
// [a] * 152 + [b] * 5 + [None] * 3
let mut expected_finger_list = repeat(Some(a)).take(152).collect::<Vec<_>>();
expected_finger_list.extend(repeat(Some(b)).take(5));
expected_finger_list.extend(repeat(None).take(3));
assert_eq!(node_d.lock_finger()?.list(), &expected_finger_list);
// Note the max successor sequence size of node_d is set to 1 when created.
// After join, the successor sequence of node_a should still be [a].
// Because node_a is closer to node_d, and the sequence is full.
assert_eq!(node_d.successors().list()?, vec![a]);
Ok(())
}
#[tokio::test]
async fn test_two_node_finger() -> Result<()> {
let mut key1 = SecretKey::random();
let mut key2 = SecretKey::random();
if key1.address() > key2.address() {
(key1, key2) = (key2, key1)
}
let did1: Did = key1.address().into();
let did2: Did = key2.address().into();
let node1 = PeerRing::new_with_storage(did1, 3, Box::new(MemStorage::new()));
let node2 = PeerRing::new_with_storage(did2, 3, Box::new(MemStorage::new()));
node1.join(did2)?;
node2.join(did1)?;
assert!(node1.successors().list()?.contains(&did2));
assert!(node2.successors().list()?.contains(&did1));
assert!(
node1.lock_finger()?.contains(Some(did2)),
"did1:{:?}; did2:{:?}",
did1,
did2
);
assert!(
node2.lock_finger()?.contains(Some(did1)),
"did1:{:?}; did2:{:?}",
did1,
did2
);
Ok(())
}
#[tokio::test]
async fn test_two_node_finger_failed_case() -> Result<()> {
let did1 = Did::from_str("0x051cf4f8d020cb910474bef3e17f153fface2b5f").unwrap();
let did2 = Did::from_str("0x54baa7dc9e28f41da5d71af8fa6f2a302be1c1bf").unwrap();
let max = Did::from(BigUint::from(2u16).pow(160) - 1u16);
let zero = Did::from(BigUint::from(2u16).pow(160));
let node1 = PeerRing::new_with_storage(did1, 3, Box::new(MemStorage::new()));
let node2 = PeerRing::new_with_storage(did2, 3, Box::new(MemStorage::new()));
node1.join(did2)?;
node2.join(did1)?;
assert!(node1.successors().list()?.contains(&did2));
assert!(node2.successors().list()?.contains(&did1));
let pos_159 = did2 + Did::from(BigUint::from(2u16).pow(159));
assert!(pos_159 > did2);
assert!(pos_159 < max, "{:?};{:?}", pos_159, max);
let pos_160 = did2 + zero;
assert_eq!(pos_160, did2);
assert!(pos_160 > did1);
assert!(
node1.lock_finger()?.contains(Some(did2)),
"did1:{:?}; did2:{:?}",
did1,
did2
);
assert!(
node2.lock_finger()?.contains(Some(did1)),
"did2:{:?} dont contains did1:{:?}",
did2,
did1
);
Ok(())
}
/// Test Correct Chord implementation
#[tokio::test]
async fn test_correct_chord_impl() -> Result<()> {
fn assert_successor(dht: &PeerRing, did: &Did) -> bool {
let succ_list = dht.successors();
succ_list.list().unwrap().contains(did)
}
/// check that two dht is mutual successors
fn check_is_mutual_successors(dht1: &PeerRing, dht2: &PeerRing) {
let succ_list_1 = dht1.successors();
let succ_list_2 = dht2.successors();
assert_eq!(succ_list_1.min().unwrap(), dht2.did);
assert_eq!(succ_list_2.min().unwrap(), dht1.did);
}
fn check_succ_is_including(dht: &PeerRing, dids: Vec<Did>) {
let succ_list = dht.successors();
for did in dids {
assert!(succ_list.list().unwrap().contains(&did));
}
}
let dhts = gen_sorted_dht(5);
let [n1, n2, n3, n4, n5] = dhts.as_slice() else {
panic!("wrong dhts length");
};
// we now have:
// n1 < n2 < n3 < n4
// n1 join n2
n1.join(n2.did).unwrap();
n2.join(n1.did).unwrap();
// for now n1, n2 are `mutual successors`.
check_is_mutual_successors(n1, n2);
// n1 join n3
n1.join(n3.did).unwrap();
n1.join(n4.did).unwrap();
// for now n1's successor should include n1 and n3
check_succ_is_including(n1, vec![n2.did, n3.did, n4.did]);
n1.join(n5.did).unwrap();
// n5 is not in n1's successor list
assert!(!assert_successor(n1, &n5.did));
#[cfg_attr(feature = "wasm", async_trait(?Send))]
#[cfg_attr(not(feature = "wasm"), async_trait)]
impl LiveDid for Did {
async fn live(&self) -> bool {
true
}
}
if let PeerRingAction::MultiActions(rets) = n5.join_then_sync(n1.did).await.unwrap() {
for r in rets {
if let PeerRingAction::RemoteAction(t, _) = r {
assert_eq!(t, n1.did.clone())
} else {
panic!("wrong remote");
}
}
} else {
panic!("Wrong ret");
}
Ok(())
}
}