Expand description
§RingKernel Accounting Network Analytics
GPU-accelerated accounting network analysis with real-time visualization.
This crate transforms traditional double-entry bookkeeping into a graph representation, enabling advanced analytics like:
- Fraud Pattern Detection: Circular flows, threshold clustering, Benford violations
- GAAP Compliance: Automated violation detection for accounting rules
- Behavioral Anomalies: Time-series based anomaly detection
- Network Metrics: Centrality, PageRank, community detection
§Architecture
┌─────────────────┐ ┌──────────────────┐ ┌────────────────┐
│ Data Fabric │────▶│ GPU Kernels │────▶│ Visualization │
│ (Synthetic Gen) │ │ (CUDA/WGSL) │ │ (egui Canvas) │
└─────────────────┘ └──────────────────┘ └────────────────┘
│ │ │
▼ ▼ ▼
┌─────────────────┐ ┌──────────────────┐ ┌────────────────┐
│ Journal Entries │ │ Network Analysis │ │ Graph Layout │
│ Transaction Gen │ │ Fraud Detection │ │ Flow Animation │
│ Anomaly Inject │ │ Temporal Analysis│ │ Analytics UI │
└─────────────────┘ └──────────────────┘ └────────────────┘§Quick Start
ⓘ
use ringkernel_accnet::prelude::*;
// Create a network
let mut network = AccountingNetwork::new(entity_id, 2024, 1);
// Add accounts
let cash = network.add_account(
AccountNode::new(Uuid::new_v4(), AccountType::Asset, 0),
AccountMetadata::new("1100", "Cash")
);
// Add flows
network.add_flow(TransactionFlow::new(
source, target, amount, journal_id, timestamp
));
// Run analysis
network.calculate_pagerank(0.85, 20);§GPU Kernel Types
- Journal Transformation - Methods A-E for converting entries to flows
- Network Analysis - Suspense detection, GAAP violations, fraud patterns
- Temporal Analysis - Seasonality, trends, behavioral anomalies
Modules§
- actors
- GPU-native actor system for accounting network analytics.
- analytics
- Analytics engine for real-time analysis of the accounting network.
- cuda
- CUDA code generation and GPU execution for accelerated analysis.
- fabric
- Data fabric for synthetic accounting data generation.
- gui
- GUI components for accounting network visualization.
- kernels
- GPU kernels for accounting network analysis.
- models
- Core data models for accounting network analytics.
- prelude
- Prelude for convenient imports.