1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
use core::ops::{Index, IndexMut};

use crate::ringbuffer_trait::{RingBuffer, RingBufferExt, RingBufferRead, RingBufferWrite};

extern crate alloc;

// We need boxes, so depend on alloc
use crate::GrowableAllocRingBuffer;
use core::iter::FromIterator;
use core::marker::PhantomData;
use core::ptr;

#[derive(Debug, Copy, Clone)]
pub struct PowerOfTwo;

#[derive(Debug, Copy, Clone)]
pub struct NonPowerOfTwo;
mod private {
    use crate::with_alloc::alloc_ringbuffer::{NonPowerOfTwo, PowerOfTwo};

    pub trait Sealed {}

    impl Sealed for PowerOfTwo {}
    impl Sealed for NonPowerOfTwo {}
}

pub trait RingbufferSize: private::Sealed {
    fn mask(cap: usize, index: usize) -> usize;
    fn must_be_power_of_two() -> bool;
}

impl RingbufferSize for PowerOfTwo {
    #[inline]
    fn mask(cap: usize, index: usize) -> usize {
        crate::mask(cap, index)
    }

    fn must_be_power_of_two() -> bool {
        true
    }
}

impl RingbufferSize for NonPowerOfTwo {
    #[inline]
    fn mask(cap: usize, index: usize) -> usize {
        crate::mask_modulo(cap, index)
    }

    fn must_be_power_of_two() -> bool {
        false
    }
}

/// The `AllocRingBuffer` is a `RingBufferExt` which is based on a Vec. This means it allocates at runtime
/// on the heap, and therefore needs the [`alloc`] crate. This struct and therefore the dependency on
/// alloc can be disabled by disabling the `alloc` (default) feature.
///
/// # Example
/// ```
/// use ringbuffer::{AllocRingBuffer, RingBuffer, RingBufferExt, RingBufferWrite};
///
/// let mut buffer = AllocRingBuffer::with_capacity(2);
///
/// // First entry of the buffer is now 5.
/// buffer.push(5);
///
/// // The last item we pushed is 5
/// assert_eq!(buffer.get(-1), Some(&5));
///
/// // Second entry is now 42.
/// buffer.push(42);
///
/// assert_eq!(buffer.peek(), Some(&5));
/// assert!(buffer.is_full());
///
/// // Because capacity is reached the next push will be the first item of the buffer.
/// buffer.push(1);
/// assert_eq!(buffer.to_vec(), vec![42, 1]);
/// ```
#[derive(Debug)]
pub struct AllocRingBuffer<T, SIZE: RingbufferSize = PowerOfTwo> {
    buf: *mut T,
    capacity: usize,
    readptr: usize,
    writeptr: usize,
    mode: PhantomData<SIZE>,
}

impl<T, const N: usize> From<[T; N]> for AllocRingBuffer<T, NonPowerOfTwo> {
    fn from(value: [T; N]) -> Self {
        let mut rb = Self::with_capacity_non_power_of_two(value.len());
        rb.extend(value.into_iter());
        rb
    }
}

impl<T: Clone, const N: usize> From<&[T; N]> for AllocRingBuffer<T, NonPowerOfTwo> {
    // the cast here is actually not trivial
    #[allow(trivial_casts)]
    fn from(value: &[T; N]) -> Self {
        Self::from(value as &[T])
    }
}

impl<T: Clone> From<&[T]> for AllocRingBuffer<T, NonPowerOfTwo> {
    fn from(value: &[T]) -> Self {
        let mut rb = Self::with_capacity_non_power_of_two(value.len());
        rb.extend(value.iter().cloned());
        rb
    }
}

impl<T> From<GrowableAllocRingBuffer<T>> for AllocRingBuffer<T, NonPowerOfTwo> {
    fn from(mut v: GrowableAllocRingBuffer<T>) -> AllocRingBuffer<T, NonPowerOfTwo> {
        let mut rb = AllocRingBuffer::with_capacity_non_power_of_two(v.len());
        rb.extend(v.drain());
        rb
    }
}

impl<T: Clone> From<&mut [T]> for AllocRingBuffer<T, NonPowerOfTwo> {
    fn from(value: &mut [T]) -> Self {
        Self::from(&*value)
    }
}

impl<T, SIZE: RingbufferSize> Drop for AllocRingBuffer<T, SIZE> {
    fn drop(&mut self) {
        self.drain().for_each(drop);

        let layout = alloc::alloc::Layout::array::<T>(self.capacity).unwrap();
        unsafe {
            alloc::alloc::dealloc(self.buf as *mut u8, layout);
        }
    }
}

impl<T: Clone, SIZE: RingbufferSize> Clone for AllocRingBuffer<T, SIZE> {
    fn clone(&self) -> Self {
        debug_assert_ne!(self.capacity, 0);
        debug_assert!(!SIZE::must_be_power_of_two() || self.capacity.is_power_of_two());

        // whatever the previous capacity was, we can just use the same one again.
        // It should be valid.
        let mut new = unsafe { Self::with_capacity_unchecked(self.capacity) };
        self.iter().cloned().for_each(|i| new.push(i));
        new
    }
}

impl<T: PartialEq, SIZE: RingbufferSize> PartialEq for AllocRingBuffer<T, SIZE> {
    fn eq(&self, other: &Self) -> bool {
        self.capacity == other.capacity
            && self.len() == other.len()
            && self.iter().zip(other.iter()).all(|(a, b)| a == b)
    }
}

impl<T: Eq + PartialEq, SIZE: RingbufferSize> Eq for AllocRingBuffer<T, SIZE> {}

/// The capacity of a `RingBuffer` created by new or default (`1024`).
// must be a power of 2
pub const RINGBUFFER_DEFAULT_CAPACITY: usize = 1024;

unsafe impl<T, SIZE: RingbufferSize> RingBufferExt<T> for AllocRingBuffer<T, SIZE> {
    impl_ringbuffer_ext!(
        get_unchecked,
        get_unchecked_mut,
        readptr,
        writeptr,
        SIZE::mask
    );

    #[inline]
    fn fill_with<F: FnMut() -> T>(&mut self, mut f: F) {
        self.clear();

        self.readptr = 0;
        self.writeptr = self.capacity;

        for i in 0..self.capacity {
            unsafe { ptr::write(get_unchecked_mut(self, i), f()) };
        }
    }
}

impl<T, SIZE: RingbufferSize> RingBufferRead<T> for AllocRingBuffer<T, SIZE> {
    fn dequeue(&mut self) -> Option<T> {
        if self.is_empty() {
            None
        } else {
            let index = SIZE::mask(self.capacity, self.readptr);
            let res = unsafe { get_unchecked_mut(self, index) };
            self.readptr += 1;

            // Safety: the fact that we got this maybeuninit from the buffer (with mask) means that
            // it's initialized. If it wasn't the is_empty call would have caught it. Values
            // are always initialized when inserted so this is safe.
            unsafe { Some(ptr::read(res)) }
        }
    }

    impl_ringbuffer_read!();
}

impl<T, SIZE: RingbufferSize> Extend<T> for AllocRingBuffer<T, SIZE> {
    fn extend<A: IntoIterator<Item = T>>(&mut self, iter: A) {
        let iter = iter.into_iter();

        for i in iter {
            self.push(i);
        }
    }
}

impl<T, SIZE: RingbufferSize> RingBufferWrite<T> for AllocRingBuffer<T, SIZE> {
    #[inline]
    fn push(&mut self, value: T) {
        if self.is_full() {
            let previous_value = unsafe {
                ptr::read(get_unchecked_mut(
                    self,
                    SIZE::mask(self.capacity, self.readptr),
                ))
            };

            // make sure we drop whatever is being overwritten
            // SAFETY: the buffer is full, so this must be initialized
            //       : also, index has been masked
            // make sure we drop because it won't happen automatically
            unsafe {
                drop(previous_value);
            }

            self.readptr += 1;
        }

        let index = SIZE::mask(self.capacity, self.writeptr);

        unsafe {
            ptr::write(get_unchecked_mut(self, index), value);
        }

        self.writeptr += 1;
    }
}

impl<T, SIZE: RingbufferSize> RingBuffer<T> for AllocRingBuffer<T, SIZE> {
    #[inline]
    unsafe fn ptr_capacity(rb: *const Self) -> usize {
        (*rb).capacity
    }

    impl_ringbuffer!(readptr, writeptr);
}

impl<T, SIZE: RingbufferSize> AllocRingBuffer<T, SIZE> {
    /// Creates a `AllocRingBuffer` with a certain capacity. This capacity is fixed.
    /// for this ringbuffer to work, cap must be a power of two and greater than zero.
    ///
    /// # Safety
    /// Only safe if the capacity is greater than zero, and a power of two.
    /// Only if `MODE` == [`NonPowerOfTwo`](NonPowerOfTwo) can the capacity be not a power of two, in which case this function is also safe.
    #[inline]
    unsafe fn with_capacity_unchecked(cap: usize) -> Self {
        let layout = alloc::alloc::Layout::array::<T>(cap).unwrap();
        let buf = unsafe { alloc::alloc::alloc(layout) as *mut T };

        Self {
            buf,
            capacity: cap,
            readptr: 0,
            writeptr: 0,
            mode: PhantomData,
        }
    }
}

impl<T> AllocRingBuffer<T, NonPowerOfTwo> {
    /// Creates a `AllocRingBuffer` with a certain capacity. This capacity is fixed.
    /// for this ringbuffer to work, and must not be zero.
    ///
    /// Note, that not using a power of two means some operations can't be optimized as well.
    /// For example, bitwise ands might become modulos.
    ///
    /// For example, on push operations, benchmarks have shown that a ringbuffer with a power-of-two
    /// capacity constructed with `with_capacity_non_power_of_two` (so which don't get the same optimization
    /// as the ones constructed with `with_capacity`) can be up to 3x slower
    ///
    /// # Panics
    /// if the capacity is zero
    #[inline]
    #[must_use]
    pub fn with_capacity_non_power_of_two(cap: usize) -> Self {
        assert_ne!(cap, 0, "Capacity must be greater than 0");

        // Safety: Mode is NonPowerOfTwo and we checked above that the capacity isn't zero
        unsafe { Self::with_capacity_unchecked(cap) }
    }
}

impl<T> AllocRingBuffer<T, PowerOfTwo> {
    /// Creates a `AllocRingBuffer` with a certain capacity. The actual capacity is the input to the
    /// function raised to the power of two (effectively the input is the log2 of the actual capacity)
    #[inline]
    #[must_use]
    pub fn with_capacity_power_of_2(cap_power_of_two: usize) -> Self {
        // Safety: 1 << n is always a power of two, and nonzero
        unsafe { Self::with_capacity_unchecked(1 << cap_power_of_two) }
    }

    #[inline]
    /// Creates a `AllocRingBuffer` with a certain capacity. The capacity must be a power of two.
    /// # Panics
    /// Panics when capacity is zero or not a power of two
    #[must_use]
    pub fn with_capacity(cap: usize) -> Self {
        assert_ne!(cap, 0, "Capacity must be greater than 0");
        assert!(cap.is_power_of_two(), "Capacity must be a power of two");

        // Safety: assertions check that cap is a power of two and nonzero
        unsafe { Self::with_capacity_unchecked(cap) }
    }

    /// Creates an `AllocRingBuffer` with a capacity of [`RINGBUFFER_DEFAULT_CAPACITY`].
    #[inline]
    #[must_use]
    pub fn new() -> Self {
        Self::default()
    }
}

/// Get a reference from the buffer without checking it is initialized.
/// Caller must be sure the index is in bounds, or this will panic.
#[inline]
unsafe fn get_unchecked<'a, T, SIZE: RingbufferSize>(
    rb: *const AllocRingBuffer<T, SIZE>,
    index: usize,
) -> &'a T {
    let p = (*rb).buf.add(index);
    // Safety: caller makes sure the index is in bounds for the ringbuffer.
    // All in bounds values in the ringbuffer are initialized
    &*p
}

/// Get a mut reference from the buffer without checking it is initialized.
/// Caller must be sure the index is in bounds, or this will panic.
#[inline]
unsafe fn get_unchecked_mut<T, SIZE: RingbufferSize>(
    rb: *mut AllocRingBuffer<T, SIZE>,
    index: usize,
) -> *mut T {
    let p = (*rb).buf.add(index);

    // Safety: caller makes sure the index is in bounds for the ringbuffer.
    // All in bounds values in the ringbuffer are initialized
    p.cast()
}

impl<RB, SIZE: RingbufferSize> FromIterator<RB> for AllocRingBuffer<RB, SIZE> {
    fn from_iter<T: IntoIterator<Item = RB>>(iter: T) -> Self {
        let mut res = Self::default();
        for i in iter {
            res.push(i);
        }

        res
    }
}

impl<T, SIZE: RingbufferSize> Default for AllocRingBuffer<T, SIZE> {
    /// Creates a buffer with a capacity of [`RINGBUFFER_DEFAULT_CAPACITY`].
    #[inline]
    fn default() -> Self {
        // SAFETY: RINGBUFFER_DEFAULT_CAPACITY is a power of two
        unsafe { AllocRingBuffer::with_capacity_unchecked(RINGBUFFER_DEFAULT_CAPACITY) }
    }
}

impl<T, SIZE: RingbufferSize> Index<isize> for AllocRingBuffer<T, SIZE> {
    type Output = T;

    fn index(&self, index: isize) -> &Self::Output {
        self.get(index).expect("index out of bounds")
    }
}

impl<T, SIZE: RingbufferSize> IndexMut<isize> for AllocRingBuffer<T, SIZE> {
    fn index_mut(&mut self, index: isize) -> &mut Self::Output {
        self.get_mut(index).expect("index out of bounds")
    }
}

#[cfg(test)]
mod tests {
    use super::alloc::vec::Vec;
    use crate::with_alloc::alloc_ringbuffer::RingbufferSize;
    use crate::{
        AllocRingBuffer, RingBuffer, RingBufferExt, RingBufferRead, RingBufferWrite,
        RINGBUFFER_DEFAULT_CAPACITY,
    };

    // just test that this compiles
    #[test]
    fn test_generic_clone() {
        fn helper<SIZE: RingbufferSize>(
            a: &AllocRingBuffer<i32, SIZE>,
        ) -> AllocRingBuffer<i32, SIZE> {
            a.clone()
        }

        _ = helper(&AllocRingBuffer::with_capacity(2));
        _ = helper(&AllocRingBuffer::with_capacity_non_power_of_two(5));
    }

    #[test]
    fn test_not_power_of_two() {
        let mut rb = AllocRingBuffer::with_capacity_non_power_of_two(10);
        const NUM_VALS: usize = 1000;

        // recycle the ringbuffer a bunch of time to see if noneof the logic
        // messes up
        for _ in 0..100 {
            for i in 0..NUM_VALS {
                rb.enqueue(i);
            }
            assert!(rb.is_full());

            for i in 0..10 {
                assert_eq!(Some(i + NUM_VALS - rb.capacity()), rb.dequeue())
            }

            assert!(rb.is_empty())
        }
    }

    #[test]
    fn test_default() {
        let b: AllocRingBuffer<u32> = AllocRingBuffer::default();
        assert_eq!(RINGBUFFER_DEFAULT_CAPACITY, b.capacity());
        assert_eq!(RINGBUFFER_DEFAULT_CAPACITY, b.capacity);
        assert_eq!(b.capacity, b.capacity());
        assert_eq!(0, b.writeptr);
        assert_eq!(0, b.readptr);
        assert!(b.is_empty());
        assert_eq!(0, b.iter().count());
        assert_eq!(
            Vec::<u32>::with_capacity(RINGBUFFER_DEFAULT_CAPACITY),
            b.to_vec()
        );
    }

    #[test]
    fn test_default_capacity_constant() {
        // This is to prevent accidentally changing it.
        assert_eq!(RINGBUFFER_DEFAULT_CAPACITY, 1024)
    }

    #[test]
    fn test_with_capacity_power_of_two() {
        let b = AllocRingBuffer::<i32>::with_capacity_power_of_2(2);
        assert_eq!(b.capacity, 4);
    }

    #[test]
    #[should_panic]
    fn test_with_capacity_no_power_of_two() {
        let _ = AllocRingBuffer::<i32>::with_capacity(10);
    }

    #[test]
    #[should_panic]
    fn test_index_zero_length() {
        let b = AllocRingBuffer::<i32>::with_capacity(2);
        let _ = b[2];
    }

    #[test]
    fn test_extend() {
        let mut buf = AllocRingBuffer::<u8>::with_capacity(4);
        (0..4).for_each(|_| buf.push(0));

        let new_data = [0, 1, 2];
        buf.extend(new_data);

        let expected = [0, 0, 1, 2];

        for i in 0..4 {
            let actual = buf[i as isize];
            let expected = expected[i];
            assert_eq!(actual, expected);
        }
    }

    #[test]
    fn test_extend_with_overflow() {
        let mut buf = AllocRingBuffer::<u8>::with_capacity(8);
        (0..8).for_each(|_| buf.push(0));

        let new_data = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
        buf.extend(new_data);

        let expected = [2, 3, 4, 5, 6, 7, 8, 9];

        for i in 0..8 {
            let actual = buf[i as isize];
            let expected = expected[i];
            assert_eq!(actual, expected);
        }
    }

    #[test]
    fn test_conversions() {
        // from &[T]
        let data: &[i32] = &[1, 2, 3, 4];
        let buf = AllocRingBuffer::from(data);
        assert_eq!(buf.capacity, 4);
        assert_eq!(buf.to_vec(), alloc::vec![1, 2, 3, 4]);

        // from &[T; N]
        let buf = AllocRingBuffer::from(&[1, 2, 3, 4]);
        assert_eq!(buf.capacity, 4);
        assert_eq!(buf.to_vec(), alloc::vec![1, 2, 3, 4]);

        // from [T; N]
        let buf = AllocRingBuffer::from([1, 2, 3, 4]);
        assert_eq!(buf.capacity, 4);
        assert_eq!(buf.to_vec(), alloc::vec![1, 2, 3, 4]);
    }
}