1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
use core::{
alloc::Layout, cell::Cell, hint::unreachable_unchecked, ptr::NonNull, sync::atomic::AtomicUsize,
};
use std::thread_local;
use allocator_api2::alloc::{AllocError, Allocator, Global};
use parking_lot::Mutex;
use crate::layout_max;
type Chunk<const N: usize> = crate::chunk::Chunk<AtomicUsize, N>;
/// Allocations up to this number of bytes are allocated in the tiny chunk.
const TINY_ALLOCATION_MAX_SIZE: usize = 16;
/// Size of the chunk for allocations not larger than `TINY_ALLOCATION_CHUNK_SIZE`.
const TINY_ALLOCATION_CHUNK_SIZE: usize = 16384;
/// Allocations up to this number of bytes are allocated in the small chunk.
const SMALL_ALLOCATION_MAX_SIZE: usize = 256;
/// Size of the chunk for allocations not larger than `SMALL_ALLOCATION_MAX_SIZE`.
const SMALL_ALLOCATION_CHUNK_SIZE: usize = 65536;
/// Allocations up to this number of bytes are allocated in the large chunk.
const LARGE_ALLOCATION_MAX_SIZE: usize = 65536;
/// Size of the chunk for allocations larger than `SMALL_ALLOCATION_MAX_SIZE`.
const LARGE_ALLOCATION_CHUNK_SIZE: usize = 2097152;
type TinyChunk = Chunk<{ TINY_ALLOCATION_CHUNK_SIZE }>;
type SmallChunk = Chunk<{ SMALL_ALLOCATION_CHUNK_SIZE }>;
type LargeChunk = Chunk<{ LARGE_ALLOCATION_CHUNK_SIZE }>;
struct LocalRing<T> {
// Head of the ring.
// This is the current chunk.
// When chunk is full, this chunk is moved to the end.
head: Cell<Option<NonNull<T>>>,
// Tail of the ring.
tail: Cell<Option<NonNull<T>>>,
}
impl<T> LocalRing<T> {
const fn new() -> Self {
LocalRing {
head: Cell::new(None),
tail: Cell::new(None),
}
}
}
struct GlobalRing<T> {
// Head of the ring.
// This is the current chunk.
// When chunk is full, this chunk is moved to the end.
head: Option<NonNull<T>>,
// Tail of the ring.
tail: Option<NonNull<T>>,
}
impl<T> GlobalRing<T> {
const fn new() -> Self {
GlobalRing {
head: None,
tail: None,
}
}
}
struct GlobalRings {
tiny_ring: Mutex<GlobalRing<TinyChunk>>,
small_ring: Mutex<GlobalRing<SmallChunk>>,
large_ring: Mutex<GlobalRing<LargeChunk>>,
}
impl Drop for GlobalRings {
fn drop(&mut self) {
Self::clean(self.tiny_ring.get_mut());
Self::clean(self.small_ring.get_mut());
Self::clean(self.large_ring.get_mut());
}
}
impl GlobalRings {
#[inline(never)]
fn clean_all(&self) {
Self::clean(&mut self.tiny_ring.lock());
Self::clean(&mut self.small_ring.lock());
Self::clean(&mut self.large_ring.lock());
}
#[inline(never)]
fn clean<const N: usize>(ring: &mut GlobalRing<Chunk<N>>) {
let mut chunk = &mut ring.head;
while let Some(mut c) = *chunk {
if unsafe { c.as_ref().unused() } {
// Safety: chunks in the ring are always valid.
*chunk = unsafe { c.as_mut().next() };
// Safety: `c` is valid pointer to `Chunk` allocated by `allocator`.
unsafe {
Chunk::free(c, Global);
}
} else {
// Safety: chunks in the ring are always valid.
chunk = unsafe { c.as_mut().next.get_mut() };
}
}
if ring.head.is_none() {
ring.tail = None;
}
}
}
unsafe impl Send for GlobalRings {}
unsafe impl Sync for GlobalRings {}
struct LocalRings {
tiny_ring: LocalRing<TinyChunk>,
small_ring: LocalRing<SmallChunk>,
large_ring: LocalRing<LargeChunk>,
}
impl Drop for LocalRings {
fn drop(&mut self) {
self.clean_all();
self.flush_all();
}
}
impl LocalRings {
#[inline(never)]
fn clean_all(&self) {
Self::clean(&self.tiny_ring);
Self::clean(&self.small_ring);
Self::clean(&self.large_ring);
}
#[inline(never)]
fn clean<const N: usize>(ring: &LocalRing<Chunk<N>>) {
let mut chunk = &ring.head;
while let Some(c) = chunk.get() {
if unsafe { c.as_ref().unused() } {
// Safety: chunks in the ring are always valid.
chunk.set(unsafe { c.as_ref().next() });
// Safety: `c` is valid pointer to `Chunk` allocated by `allocator`.
unsafe {
Chunk::free(c, Global);
}
} else {
// Safety: chunks in the ring are always valid.
chunk = unsafe { &c.as_ref().next };
}
}
if ring.head.get().is_none() {
ring.tail.set(None);
}
}
#[inline(never)]
fn flush_all(&mut self) {
Self::flush(&mut self.tiny_ring, &GLOBAL_RINGS.tiny_ring);
Self::flush(&mut self.small_ring, &GLOBAL_RINGS.small_ring);
Self::flush(&mut self.large_ring, &GLOBAL_RINGS.large_ring);
}
#[inline(never)]
fn flush<const N: usize>(ring: &mut LocalRing<Chunk<N>>, global: &Mutex<GlobalRing<Chunk<N>>>) {
match (ring.head.take(), ring.tail.take()) {
(None, None) => {}
(Some(head), Some(tail)) => {
let mut global = global.lock();
match (global.head, global.tail) {
(None, None) => {
global.head = Some(head);
global.tail = Some(tail);
}
(Some(_g_head), Some(mut g_tail)) => unsafe {
*g_tail.as_mut().next.get_mut() = Some(head);
global.tail = Some(tail);
},
_ => unsafe { unreachable_unchecked() },
}
}
_ => unsafe { unreachable_unchecked() },
}
}
}
thread_local! {
static LOCAL_RINGS: LocalRings = const { LocalRings {
tiny_ring: LocalRing::new(),
small_ring: LocalRing::new(),
large_ring: LocalRing::new(),
} };
}
static GLOBAL_RINGS: GlobalRings = GlobalRings {
tiny_ring: Mutex::new(GlobalRing::new()),
small_ring: Mutex::new(GlobalRing::new()),
large_ring: Mutex::new(GlobalRing::new()),
};
/// Global ring-allocator.
///
/// This allocator uses global allocator to allocate memory chunks.
///
/// Allocator uses ring buffer of chunks to allocate memory in front chunk,
/// moving it to back if chunk is full.
/// If next chunk is still occupied by previous allocation, allocator will
/// allocate new chunk.
///
/// This type is ZST and data is stored in static variables,
/// removing size overhead in collections.
///
/// Each thread will use thread-local rings to rotate over chunks.
/// On thread exit all unused chunks are freed and the rest is moved to global ring.
///
/// When thread-local ring cannot allocate memory it will steal global ring
/// or allocate new chunk from global allocator if global ring is empty.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct OneRingAlloc;
#[inline]
fn _allocate<const N: usize>(
ring: &LocalRing<Chunk<N>>,
global: &Mutex<GlobalRing<Chunk<N>>>,
layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
// Try head chunk.
if let Some(chunk_ptr) = ring.head.get() {
// Safety: `chunk` is valid pointer to `Chunk` allocated by `self.allocator`.
let chunk = unsafe { chunk_ptr.as_ref() };
match chunk.allocate(chunk_ptr, layout) {
Some(ptr) => {
// Safety: `ptr` is valid pointer to `Chunk` allocated by `self.allocator`.
// ptr is allocated to fit `layout.size()` bytes.
return Ok(unsafe {
NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut(
ptr.as_ptr(),
layout.size(),
))
});
}
// Chunk is full. Try next one.
None => match chunk.next.take() {
None => {
debug_assert_eq!(ring.tail.get(), ring.head.get());
}
Some(next_ptr) => {
// Move head to tail and bring next one as head.
// Safety: tail is valid pointer to `Chunk` allocated by `self.allocator`.
let tail_chunk = unsafe { ring.tail.get().unwrap().as_ref() };
debug_assert_eq!(tail_chunk.next(), None);
tail_chunk.next.set(Some(chunk_ptr));
ring.tail.set(Some(chunk_ptr));
ring.head.set(Some(next_ptr));
let next = unsafe { next_ptr.as_ref() };
if let Some(ptr) = next.allocate(next_ptr, layout) {
// Safety: `ptr` is valid pointer to `Chunk` allocated by `self.allocator`.
// ptr is allocated to fit `layout.size()` bytes.
return Ok(unsafe {
NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut(
ptr.as_ptr(),
layout.size(),
))
});
}
// Not ready yet. Allocate new chunk.
}
},
}
} else {
debug_assert_eq!(ring.tail.get(), None);
}
// First grab chunks from global ring.
let (g_head, g_tail) = {
let mut global = global.lock();
// Take all chunks from global ring.
(global.head.take(), global.tail.take())
};
let ptr = match (g_head, g_tail) {
(None, None) => None,
(Some(g_head), Some(mut g_tail)) => {
let ptr = unsafe { g_head.as_ref().allocate(g_head, layout) };
match (ring.head.get(), ring.tail.get()) {
(None, None) => {
ring.head.set(Some(g_head));
ring.tail.set(Some(g_tail));
}
(Some(head), Some(_tail)) => unsafe {
*g_tail.as_mut().next.get_mut() = Some(head);
ring.head.set(Some(g_head));
},
_ => unsafe { unreachable_unchecked() },
}
ptr
}
_ => unsafe { unreachable_unchecked() },
};
let ptr = match ptr {
None => {
let chunk_ptr = Chunk::<N>::new(Global)?;
// Safety: `chunk` is valid pointer to `Chunk` allocated by `self.allocator`.
let chunk = unsafe { chunk_ptr.as_ref() };
let ptr = chunk
.allocate(chunk_ptr, layout)
.expect("Failed to allocate from fresh chunk");
// Put to head.
chunk.next.set(ring.head.get());
// If first chunk, put to tail.
if ring.tail.get().is_none() {
debug_assert_eq!(ring.head.get(), None);
// Modify after asserts.
ring.tail.set(Some(chunk_ptr));
} else {
debug_assert!(ring.head.get().is_some());
}
// Modify after asserts.
ring.head.set(Some(chunk_ptr));
ptr
}
Some(ptr) => ptr,
};
// Safety: `ptr` is valid pointer to `Chunk` allocated by `self.allocator`.
// ptr is allocated to fit `layout.size()` bytes.
Ok(unsafe {
NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut(
ptr.as_ptr(),
layout.size(),
))
})
}
#[inline(never)]
unsafe fn _deallocate<const N: usize>(ptr: NonNull<u8>, layout: Layout) {
// Safety: `ptr` is valid pointer allocated from alive `Chunk`.
unsafe {
Chunk::<N>::deallocate(ptr.as_ptr(), layout);
}
}
impl OneRingAlloc {
/// Attempts to allocate a block of memory with global ring-allocator.
/// Returns a pointer to the beginning of the block if successful.
#[inline(never)]
pub fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
if layout_max(layout) <= TINY_ALLOCATION_MAX_SIZE {
LOCAL_RINGS.with(|rings| _allocate(&rings.tiny_ring, &GLOBAL_RINGS.tiny_ring, layout))
} else if layout_max(layout) <= SMALL_ALLOCATION_MAX_SIZE {
LOCAL_RINGS.with(|rings| _allocate(&rings.small_ring, &GLOBAL_RINGS.small_ring, layout))
} else if layout_max(layout) <= LARGE_ALLOCATION_MAX_SIZE {
LOCAL_RINGS.with(|rings| _allocate(&rings.large_ring, &GLOBAL_RINGS.large_ring, layout))
} else {
Global.allocate(layout)
}
}
/// Deallocates the memory referenced by `ptr`.
///
/// # Safety
///
/// * `ptr` must denote a block of memory [*currently allocated*]
/// via [`allocate`] or [`OneRingAlloc::allocate`], and
/// * `layout` must [*fit*] that block of memory.
///
/// [*currently allocated*]: https://doc.rust-lang.org/std/alloc/trait.Allocator.html#currently-allocated-memory
/// [*fit*]: https://doc.rust-lang.org/std/alloc/trait.Allocator.html#memory-fitting
#[inline(never)]
pub unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
if layout_max(layout) <= TINY_ALLOCATION_MAX_SIZE {
unsafe {
_deallocate::<{ TINY_ALLOCATION_CHUNK_SIZE }>(ptr, layout);
}
} else if layout_max(layout) <= SMALL_ALLOCATION_MAX_SIZE {
unsafe {
_deallocate::<{ SMALL_ALLOCATION_CHUNK_SIZE }>(ptr, layout);
}
} else if layout_max(layout) <= LARGE_ALLOCATION_MAX_SIZE {
unsafe {
_deallocate::<{ LARGE_ALLOCATION_CHUNK_SIZE }>(ptr, layout);
}
} else {
unsafe { Global.deallocate(ptr, layout) }
}
}
/// Cleans global shared rings.
///
/// When thread exists it frees all chunks that it allocated,
/// except those that are still in use by currently allocated blocks.
/// Chunks that are still in use are put to global shared rings.
///
/// Those get stolen by thread if thread needs new chunk.
///
/// This function frees all chunks that are in global shared rings
/// if they are not in use by currently allocated blocks.
///
/// This function may reduce memory overhead if threads exist and blocks
/// allocated by them is freed later, while all other threads are warm.
pub fn clean_global(&self) {
GLOBAL_RINGS.clean_all();
}
/// Cleans local rings.
///
/// Thread frees chunks that it allocated when it exists.
/// While thread is running chunks are stored in thread-local rings
/// and reused in circular manner without deallocation.
///
/// This method frees all chunks that are not in use by currently allocated blocks
/// in the local rings.
/// Call this when thread's memory usage drops significantly
/// and you want to reduce memory overhead.
pub fn clean_local(&self) {
LOCAL_RINGS.with(|rings| rings.clean_all());
}
}
unsafe impl Allocator for OneRingAlloc {
#[inline(never)]
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
self.allocate(layout)
}
#[inline(never)]
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
unsafe {
self.deallocate(ptr, layout);
}
}
}