Function ring_algorithm::modulo_division [−][src]
pub fn modulo_division<T>(a: T, b: T, m: T) -> Option<T> where
T: Sized + Clone + Eq + Zero + One + RingNormalize,
for<'x> &'x T: EuclideanRingOperation<T>,
Expand description
division in modulo
calc x ($bx \equiv a \pmod{m}
$)
use ring_algorithm::modulo_division; let a = 42; let b = 32; let m = 98; let x = modulo_division::<i32>(a, b, m).unwrap(); assert_eq!((b * x - a) % m, 0);