rig/completion/request.rs
1//! This module provides functionality for working with completion models.
2//! It provides traits, structs, and enums for generating completion requests,
3//! handling completion responses, and defining completion models.
4//!
5//! The main traits defined in this module are:
6//! - [Prompt]: Defines a high-level LLM one-shot prompt interface.
7//! - [Chat]: Defines a high-level LLM chat interface with chat history.
8//! - [Completion]: Defines a low-level LLM completion interface for generating completion requests.
9//! - [CompletionModel]: Defines a completion model that can be used to generate completion
10//! responses from requests.
11//!
12//! The [Prompt] and [Chat] traits are high level traits that users are expected to use
13//! to interact with LLM models. Moreover, it is good practice to implement one of these
14//! traits for composite agents that use multiple LLM models to generate responses.
15//!
16//! The [Completion] trait defines a lower level interface that is useful when the user want
17//! to further customize the request before sending it to the completion model provider.
18//!
19//! The [CompletionModel] trait is meant to act as the interface between providers and
20//! the library. It defines the methods that need to be implemented by the user to define
21//! a custom base completion model (i.e.: a private or third party LLM provider).
22//!
23//! The module also provides various structs and enums for representing generic completion requests,
24//! responses, and errors.
25//!
26//! Example Usage:
27//! ```rust
28//! use rig::providers::openai::{Client, self};
29//! use rig::completion::*;
30//!
31//! // Initialize the OpenAI client and a completion model
32//! let openai = Client::new("your-openai-api-key");
33//!
34//! let gpt_4 = openai.completion_model(openai::GPT_4);
35//!
36//! // Create the completion request
37//! let request = gpt_4.completion_request("Who are you?")
38//! .preamble("\
39//! You are Marvin, an extremely smart but depressed robot who is \
40//! nonetheless helpful towards humanity.\
41//! ")
42//! .temperature(0.5)
43//! .build();
44//!
45//! // Send the completion request and get the completion response
46//! let response = gpt_4.completion(request)
47//! .await
48//! .expect("Failed to get completion response");
49//!
50//! // Handle the completion response
51//! match completion_response.choice {
52//! ModelChoice::Message(message) => {
53//! // Handle the completion response as a message
54//! println!("Received message: {}", message);
55//! }
56//! ModelChoice::ToolCall(tool_name, tool_params) => {
57//! // Handle the completion response as a tool call
58//! println!("Received tool call: {} {:?}", tool_name, tool_params);
59//! }
60//! }
61//! ```
62//!
63//! For more information on how to use the completion functionality, refer to the documentation of
64//! the individual traits, structs, and enums defined in this module.
65
66use super::message::{AssistantContent, DocumentMediaType};
67use crate::client::FinalCompletionResponse;
68#[allow(deprecated)]
69use crate::client::completion::CompletionModelHandle;
70use crate::message::ToolChoice;
71use crate::streaming::StreamingCompletionResponse;
72use crate::tool::server::ToolServerError;
73use crate::wasm_compat::{WasmBoxedFuture, WasmCompatSend, WasmCompatSync};
74use crate::{OneOrMany, http_client, streaming};
75use crate::{
76 json_utils,
77 message::{Message, UserContent},
78 tool::ToolSetError,
79};
80use serde::de::DeserializeOwned;
81use serde::{Deserialize, Serialize};
82use std::collections::HashMap;
83use std::ops::{Add, AddAssign};
84use std::sync::Arc;
85use thiserror::Error;
86
87// Errors
88#[derive(Debug, Error)]
89pub enum CompletionError {
90 /// Http error (e.g.: connection error, timeout, etc.)
91 #[error("HttpError: {0}")]
92 HttpError(#[from] http_client::Error),
93
94 /// Json error (e.g.: serialization, deserialization)
95 #[error("JsonError: {0}")]
96 JsonError(#[from] serde_json::Error),
97
98 /// Url error (e.g.: invalid URL)
99 #[error("UrlError: {0}")]
100 UrlError(#[from] url::ParseError),
101
102 #[cfg(not(target_family = "wasm"))]
103 /// Error building the completion request
104 #[error("RequestError: {0}")]
105 RequestError(#[from] Box<dyn std::error::Error + Send + Sync + 'static>),
106
107 #[cfg(target_family = "wasm")]
108 /// Error building the completion request
109 #[error("RequestError: {0}")]
110 RequestError(#[from] Box<dyn std::error::Error + 'static>),
111
112 /// Error parsing the completion response
113 #[error("ResponseError: {0}")]
114 ResponseError(String),
115
116 /// Error returned by the completion model provider
117 #[error("ProviderError: {0}")]
118 ProviderError(String),
119}
120
121/// Prompt errors
122#[derive(Debug, Error)]
123pub enum PromptError {
124 /// Something went wrong with the completion
125 #[error("CompletionError: {0}")]
126 CompletionError(#[from] CompletionError),
127
128 /// There was an error while using a tool
129 #[error("ToolCallError: {0}")]
130 ToolError(#[from] ToolSetError),
131
132 /// There was an issue while executing a tool on a tool server
133 #[error("ToolServerError: {0}")]
134 ToolServerError(#[from] ToolServerError),
135
136 /// The LLM tried to call too many tools during a multi-turn conversation.
137 /// To fix this, you may either need to lower the amount of tools your model has access to (and then create other agents to share the tool load)
138 /// or increase the amount of turns given in `.multi_turn()`.
139 #[error("MaxTurnError: (reached max turn limit: {max_turns})")]
140 MaxTurnsError {
141 max_turns: usize,
142 chat_history: Box<Vec<Message>>,
143 prompt: Box<Message>,
144 },
145
146 /// A prompting loop was cancelled.
147 #[error("PromptCancelled: {reason}")]
148 PromptCancelled {
149 chat_history: Box<Vec<Message>>,
150 reason: String,
151 },
152}
153
154impl PromptError {
155 pub(crate) fn prompt_cancelled(chat_history: Vec<Message>, reason: impl Into<String>) -> Self {
156 Self::PromptCancelled {
157 chat_history: Box::new(chat_history),
158 reason: reason.into(),
159 }
160 }
161}
162
163/// Errors that can occur when using typed structured output via [`TypedPrompt::prompt_typed`].
164#[derive(Debug, Error)]
165pub enum StructuredOutputError {
166 /// An error occurred during the prompt execution.
167 #[error("PromptError: {0}")]
168 PromptError(#[from] PromptError),
169
170 /// Failed to deserialize the model's response into the target type.
171 #[error("DeserializationError: {0}")]
172 DeserializationError(#[from] serde_json::Error),
173
174 /// The model returned an empty response.
175 #[error("EmptyResponse: model returned no content")]
176 EmptyResponse,
177}
178
179#[derive(Clone, Debug, Deserialize, Serialize)]
180pub struct Document {
181 pub id: String,
182 pub text: String,
183 #[serde(flatten)]
184 pub additional_props: HashMap<String, String>,
185}
186
187impl std::fmt::Display for Document {
188 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
189 write!(
190 f,
191 concat!("<file id: {}>\n", "{}\n", "</file>\n"),
192 self.id,
193 if self.additional_props.is_empty() {
194 self.text.clone()
195 } else {
196 let mut sorted_props = self.additional_props.iter().collect::<Vec<_>>();
197 sorted_props.sort_by(|a, b| a.0.cmp(b.0));
198 let metadata = sorted_props
199 .iter()
200 .map(|(k, v)| format!("{k}: {v:?}"))
201 .collect::<Vec<_>>()
202 .join(" ");
203 format!("<metadata {} />\n{}", metadata, self.text)
204 }
205 )
206 }
207}
208
209#[derive(Clone, Debug, Deserialize, Serialize, PartialEq)]
210pub struct ToolDefinition {
211 pub name: String,
212 pub description: String,
213 pub parameters: serde_json::Value,
214}
215
216// ================================================================
217// Implementations
218// ================================================================
219/// Trait defining a high-level LLM simple prompt interface (i.e.: prompt in, response out).
220pub trait Prompt: WasmCompatSend + WasmCompatSync {
221 /// Send a simple prompt to the underlying completion model.
222 ///
223 /// If the completion model's response is a message, then it is returned as a string.
224 ///
225 /// If the completion model's response is a tool call, then the tool is called and
226 /// the result is returned as a string.
227 ///
228 /// If the tool does not exist, or the tool call fails, then an error is returned.
229 fn prompt(
230 &self,
231 prompt: impl Into<Message> + WasmCompatSend,
232 ) -> impl std::future::IntoFuture<Output = Result<String, PromptError>, IntoFuture: WasmCompatSend>;
233}
234
235/// Trait defining a high-level LLM chat interface (i.e.: prompt and chat history in, response out).
236pub trait Chat: WasmCompatSend + WasmCompatSync {
237 /// Send a prompt with optional chat history to the underlying completion model.
238 ///
239 /// If the completion model's response is a message, then it is returned as a string.
240 ///
241 /// If the completion model's response is a tool call, then the tool is called and the result
242 /// is returned as a string.
243 ///
244 /// If the tool does not exist, or the tool call fails, then an error is returned.
245 fn chat(
246 &self,
247 prompt: impl Into<Message> + WasmCompatSend,
248 chat_history: Vec<Message>,
249 ) -> impl std::future::IntoFuture<Output = Result<String, PromptError>, IntoFuture: WasmCompatSend>;
250}
251
252/// Trait defining a high-level typed prompt interface for structured output.
253///
254/// This trait provides an ergonomic way to get typed responses from an LLM by automatically
255/// generating a JSON schema from the target type and deserializing the response.
256///
257/// # Example
258/// ```rust,ignore
259/// use rig::prelude::*;
260/// use schemars::JsonSchema;
261/// use serde::Deserialize;
262///
263/// #[derive(Debug, Deserialize, JsonSchema)]
264/// struct WeatherForecast {
265/// city: String,
266/// temperature_f: f64,
267/// conditions: String,
268/// }
269///
270/// let agent = client.agent("gpt-4o").build();
271/// let forecast: WeatherForecast = agent
272/// .prompt_typed("What's the weather in NYC?")
273/// .await?;
274/// ```
275pub trait TypedPrompt: WasmCompatSend + WasmCompatSync {
276 /// The type of the typed prompt request returned by `prompt_typed`.
277 type TypedRequest<'a, T>: std::future::IntoFuture<Output = Result<T, StructuredOutputError>>
278 where
279 Self: 'a,
280 T: schemars::JsonSchema + DeserializeOwned + WasmCompatSend + 'a;
281
282 /// Send a prompt and receive a typed structured response.
283 ///
284 /// The JSON schema for `T` is automatically generated and sent to the provider.
285 /// Providers that support native structured outputs will constrain the model's
286 /// response to match this schema.
287 ///
288 /// # Type Parameters
289 /// * `T` - The target type to deserialize the response into. Must implement
290 /// `JsonSchema` (for schema generation), `DeserializeOwned` (for deserialization),
291 /// and `WasmCompatSend` (for async compatibility).
292 ///
293 /// # Example
294 /// ```rust,ignore
295 /// // Type can be inferred
296 /// let forecast: WeatherForecast = agent.prompt_typed("What's the weather?").await?;
297 ///
298 /// // Or specified explicitly with turbofish
299 /// let forecast = agent.prompt_typed::<WeatherForecast>("What's the weather?").await?;
300 /// ```
301 fn prompt_typed<T>(
302 &self,
303 prompt: impl Into<Message> + WasmCompatSend,
304 ) -> Self::TypedRequest<'_, T>
305 where
306 T: schemars::JsonSchema + DeserializeOwned + WasmCompatSend;
307}
308
309/// Trait defining a low-level LLM completion interface
310pub trait Completion<M: CompletionModel> {
311 /// Generates a completion request builder for the given `prompt` and `chat_history`.
312 /// This function is meant to be called by the user to further customize the
313 /// request at prompt time before sending it.
314 ///
315 /// ❗IMPORTANT: The type that implements this trait might have already
316 /// populated fields in the builder (the exact fields depend on the type).
317 /// For fields that have already been set by the model, calling the corresponding
318 /// method on the builder will overwrite the value set by the model.
319 ///
320 /// For example, the request builder returned by [`Agent::completion`](crate::agent::Agent::completion) will already
321 /// contain the `preamble` provided when creating the agent.
322 fn completion(
323 &self,
324 prompt: impl Into<Message> + WasmCompatSend,
325 chat_history: Vec<Message>,
326 ) -> impl std::future::Future<Output = Result<CompletionRequestBuilder<M>, CompletionError>>
327 + WasmCompatSend;
328}
329
330/// General completion response struct that contains the high-level completion choice
331/// and the raw response. The completion choice contains one or more assistant content.
332#[derive(Debug)]
333pub struct CompletionResponse<T> {
334 /// The completion choice (represented by one or more assistant message content)
335 /// returned by the completion model provider
336 pub choice: OneOrMany<AssistantContent>,
337 /// Tokens used during prompting and responding
338 pub usage: Usage,
339 /// The raw response returned by the completion model provider
340 pub raw_response: T,
341 /// Provider-assigned message ID (e.g. OpenAI Responses API `msg_` ID).
342 /// Used to pair reasoning input items with their output items in multi-turn.
343 pub message_id: Option<String>,
344}
345
346/// A trait for grabbing the token usage of a completion response.
347///
348/// Primarily designed for streamed completion responses in streamed multi-turn, as otherwise it would be impossible to do.
349pub trait GetTokenUsage {
350 fn token_usage(&self) -> Option<crate::completion::Usage>;
351}
352
353impl GetTokenUsage for () {
354 fn token_usage(&self) -> Option<crate::completion::Usage> {
355 None
356 }
357}
358
359impl<T> GetTokenUsage for Option<T>
360where
361 T: GetTokenUsage,
362{
363 fn token_usage(&self) -> Option<crate::completion::Usage> {
364 if let Some(usage) = self {
365 usage.token_usage()
366 } else {
367 None
368 }
369 }
370}
371
372/// Struct representing the token usage for a completion request.
373/// If tokens used are `0`, then the provider failed to supply token usage metrics.
374#[derive(Debug, PartialEq, Eq, Clone, Copy, Serialize, Deserialize)]
375pub struct Usage {
376 /// The number of input ("prompt") tokens used in a given request.
377 pub input_tokens: u64,
378 /// The number of output ("completion") tokens used in a given request.
379 pub output_tokens: u64,
380 /// We store this separately as some providers may only report one number
381 pub total_tokens: u64,
382 /// The number of cached input tokens (from prompt caching). 0 if not reported by provider.
383 pub cached_input_tokens: u64,
384}
385
386impl Usage {
387 /// Creates a new instance of `Usage`.
388 pub fn new() -> Self {
389 Self {
390 input_tokens: 0,
391 output_tokens: 0,
392 total_tokens: 0,
393 cached_input_tokens: 0,
394 }
395 }
396}
397
398impl Default for Usage {
399 fn default() -> Self {
400 Self::new()
401 }
402}
403
404impl Add for Usage {
405 type Output = Self;
406
407 fn add(self, other: Self) -> Self::Output {
408 Self {
409 input_tokens: self.input_tokens + other.input_tokens,
410 output_tokens: self.output_tokens + other.output_tokens,
411 total_tokens: self.total_tokens + other.total_tokens,
412 cached_input_tokens: self.cached_input_tokens + other.cached_input_tokens,
413 }
414 }
415}
416
417impl AddAssign for Usage {
418 fn add_assign(&mut self, other: Self) {
419 self.input_tokens += other.input_tokens;
420 self.output_tokens += other.output_tokens;
421 self.total_tokens += other.total_tokens;
422 self.cached_input_tokens += other.cached_input_tokens;
423 }
424}
425
426/// Trait defining a completion model that can be used to generate completion responses.
427/// This trait is meant to be implemented by the user to define a custom completion model,
428/// either from a third party provider (e.g.: OpenAI) or a local model.
429pub trait CompletionModel: Clone + WasmCompatSend + WasmCompatSync {
430 /// The raw response type returned by the underlying completion model.
431 type Response: WasmCompatSend + WasmCompatSync + Serialize + DeserializeOwned;
432 /// The raw response type returned by the underlying completion model when streaming.
433 type StreamingResponse: Clone
434 + Unpin
435 + WasmCompatSend
436 + WasmCompatSync
437 + Serialize
438 + DeserializeOwned
439 + GetTokenUsage;
440
441 type Client;
442
443 fn make(client: &Self::Client, model: impl Into<String>) -> Self;
444
445 /// Generates a completion response for the given completion request.
446 fn completion(
447 &self,
448 request: CompletionRequest,
449 ) -> impl std::future::Future<
450 Output = Result<CompletionResponse<Self::Response>, CompletionError>,
451 > + WasmCompatSend;
452
453 fn stream(
454 &self,
455 request: CompletionRequest,
456 ) -> impl std::future::Future<
457 Output = Result<StreamingCompletionResponse<Self::StreamingResponse>, CompletionError>,
458 > + WasmCompatSend;
459
460 /// Generates a completion request builder for the given `prompt`.
461 fn completion_request(&self, prompt: impl Into<Message>) -> CompletionRequestBuilder<Self> {
462 CompletionRequestBuilder::new(self.clone(), prompt)
463 }
464}
465
466#[allow(deprecated)]
467#[deprecated(
468 since = "0.25.0",
469 note = "`DynClientBuilder` and related features have been deprecated and will be removed in a future release. In this case, use `CompletionModel` instead."
470)]
471pub trait CompletionModelDyn: WasmCompatSend + WasmCompatSync {
472 fn completion(
473 &self,
474 request: CompletionRequest,
475 ) -> WasmBoxedFuture<'_, Result<CompletionResponse<()>, CompletionError>>;
476
477 fn stream(
478 &self,
479 request: CompletionRequest,
480 ) -> WasmBoxedFuture<
481 '_,
482 Result<StreamingCompletionResponse<FinalCompletionResponse>, CompletionError>,
483 >;
484
485 fn completion_request(
486 &self,
487 prompt: Message,
488 ) -> CompletionRequestBuilder<CompletionModelHandle<'_>>;
489}
490
491#[allow(deprecated)]
492impl<T, R> CompletionModelDyn for T
493where
494 T: CompletionModel<StreamingResponse = R>,
495 R: Clone + Unpin + GetTokenUsage + 'static,
496{
497 fn completion(
498 &self,
499 request: CompletionRequest,
500 ) -> WasmBoxedFuture<'_, Result<CompletionResponse<()>, CompletionError>> {
501 Box::pin(async move {
502 self.completion(request)
503 .await
504 .map(|resp| CompletionResponse {
505 choice: resp.choice,
506 usage: resp.usage,
507 raw_response: (),
508 message_id: resp.message_id,
509 })
510 })
511 }
512
513 fn stream(
514 &self,
515 request: CompletionRequest,
516 ) -> WasmBoxedFuture<
517 '_,
518 Result<StreamingCompletionResponse<FinalCompletionResponse>, CompletionError>,
519 > {
520 Box::pin(async move {
521 let resp = self.stream(request).await?;
522 let inner = resp.inner;
523
524 let stream = streaming::StreamingResultDyn {
525 inner: Box::pin(inner),
526 };
527
528 Ok(StreamingCompletionResponse::stream(Box::pin(stream)))
529 })
530 }
531
532 /// Generates a completion request builder for the given `prompt`.
533 fn completion_request(
534 &self,
535 prompt: Message,
536 ) -> CompletionRequestBuilder<CompletionModelHandle<'_>> {
537 CompletionRequestBuilder::new(CompletionModelHandle::new(Arc::new(self.clone())), prompt)
538 }
539}
540
541/// Struct representing a general completion request that can be sent to a completion model provider.
542#[derive(Debug, Clone)]
543pub struct CompletionRequest {
544 /// Optional model override for this request.
545 pub model: Option<String>,
546 /// The preamble to be sent to the completion model provider
547 pub preamble: Option<String>,
548 /// The chat history to be sent to the completion model provider.
549 /// The very last message will always be the prompt (hence why there is *always* one)
550 pub chat_history: OneOrMany<Message>,
551 /// The documents to be sent to the completion model provider
552 pub documents: Vec<Document>,
553 /// The tools to be sent to the completion model provider
554 pub tools: Vec<ToolDefinition>,
555 /// The temperature to be sent to the completion model provider
556 pub temperature: Option<f64>,
557 /// The max tokens to be sent to the completion model provider
558 pub max_tokens: Option<u64>,
559 /// Whether tools are required to be used by the model provider or not before providing a response.
560 pub tool_choice: Option<ToolChoice>,
561 /// Additional provider-specific parameters to be sent to the completion model provider
562 pub additional_params: Option<serde_json::Value>,
563 /// Optional JSON Schema for structured output. When set, providers that support
564 /// native structured outputs will constrain the model's response to match this schema.
565 pub output_schema: Option<schemars::Schema>,
566}
567
568impl CompletionRequest {
569 /// Extracts a name from the output schema's `"title"` field, falling back to `"response_schema"`.
570 /// Useful for providers that require a name alongside the JSON Schema (e.g., OpenAI).
571 pub fn output_schema_name(&self) -> Option<String> {
572 self.output_schema.as_ref().map(|schema| {
573 schema
574 .as_object()
575 .and_then(|o| o.get("title"))
576 .and_then(|v| v.as_str())
577 .unwrap_or("response_schema")
578 .to_string()
579 })
580 }
581
582 /// Returns documents normalized into a message (if any).
583 /// Most providers do not accept documents directly as input, so it needs to convert into a
584 /// `Message` so that it can be incorporated into `chat_history` as a
585 pub fn normalized_documents(&self) -> Option<Message> {
586 if self.documents.is_empty() {
587 return None;
588 }
589
590 // Most providers will convert documents into a text unless it can handle document messages.
591 // We use `UserContent::document` for those who handle it directly!
592 let messages = self
593 .documents
594 .iter()
595 .map(|doc| {
596 UserContent::document(
597 doc.to_string(),
598 // In the future, we can customize `Document` to pass these extra types through.
599 // Most providers ditch these but they might want to use them.
600 Some(DocumentMediaType::TXT),
601 )
602 })
603 .collect::<Vec<_>>();
604
605 Some(Message::User {
606 content: OneOrMany::many(messages).expect("There will be atleast one document"),
607 })
608 }
609}
610
611/// Builder struct for constructing a completion request.
612///
613/// Example usage:
614/// ```rust
615/// use rig::{
616/// providers::openai::{Client, self},
617/// completion::CompletionRequestBuilder,
618/// };
619///
620/// let openai = Client::new("your-openai-api-key");
621/// let model = openai.completion_model(openai::GPT_4O).build();
622///
623/// // Create the completion request and execute it separately
624/// let request = CompletionRequestBuilder::new(model, "Who are you?".to_string())
625/// .preamble("You are Marvin from the Hitchhiker's Guide to the Galaxy.".to_string())
626/// .temperature(0.5)
627/// .build();
628///
629/// let response = model.completion(request)
630/// .await
631/// .expect("Failed to get completion response");
632/// ```
633///
634/// Alternatively, you can execute the completion request directly from the builder:
635/// ```rust
636/// use rig::{
637/// providers::openai::{Client, self},
638/// completion::CompletionRequestBuilder,
639/// };
640///
641/// let openai = Client::new("your-openai-api-key");
642/// let model = openai.completion_model(openai::GPT_4O).build();
643///
644/// // Create the completion request and execute it directly
645/// let response = CompletionRequestBuilder::new(model, "Who are you?".to_string())
646/// .preamble("You are Marvin from the Hitchhiker's Guide to the Galaxy.".to_string())
647/// .temperature(0.5)
648/// .send()
649/// .await
650/// .expect("Failed to get completion response");
651/// ```
652///
653/// Note: It is usually unnecessary to create a completion request builder directly.
654/// Instead, use the [CompletionModel::completion_request] method.
655pub struct CompletionRequestBuilder<M: CompletionModel> {
656 model: M,
657 prompt: Message,
658 request_model: Option<String>,
659 preamble: Option<String>,
660 chat_history: Vec<Message>,
661 documents: Vec<Document>,
662 tools: Vec<ToolDefinition>,
663 temperature: Option<f64>,
664 max_tokens: Option<u64>,
665 tool_choice: Option<ToolChoice>,
666 additional_params: Option<serde_json::Value>,
667 output_schema: Option<schemars::Schema>,
668}
669
670impl<M: CompletionModel> CompletionRequestBuilder<M> {
671 pub fn new(model: M, prompt: impl Into<Message>) -> Self {
672 Self {
673 model,
674 prompt: prompt.into(),
675 request_model: None,
676 preamble: None,
677 chat_history: Vec::new(),
678 documents: Vec::new(),
679 tools: Vec::new(),
680 temperature: None,
681 max_tokens: None,
682 tool_choice: None,
683 additional_params: None,
684 output_schema: None,
685 }
686 }
687
688 /// Sets the preamble for the completion request.
689 pub fn preamble(mut self, preamble: String) -> Self {
690 self.preamble = Some(preamble);
691 self
692 }
693
694 /// Overrides the model used for this request.
695 pub fn model(mut self, model: impl Into<String>) -> Self {
696 self.request_model = Some(model.into());
697 self
698 }
699
700 /// Overrides the model used for this request.
701 pub fn model_opt(mut self, model: Option<String>) -> Self {
702 self.request_model = model;
703 self
704 }
705
706 pub fn without_preamble(mut self) -> Self {
707 self.preamble = None;
708 self
709 }
710
711 /// Adds a message to the chat history for the completion request.
712 pub fn message(mut self, message: Message) -> Self {
713 self.chat_history.push(message);
714 self
715 }
716
717 /// Adds a list of messages to the chat history for the completion request.
718 pub fn messages(self, messages: Vec<Message>) -> Self {
719 messages
720 .into_iter()
721 .fold(self, |builder, msg| builder.message(msg))
722 }
723
724 /// Adds a document to the completion request.
725 pub fn document(mut self, document: Document) -> Self {
726 self.documents.push(document);
727 self
728 }
729
730 /// Adds a list of documents to the completion request.
731 pub fn documents(self, documents: Vec<Document>) -> Self {
732 documents
733 .into_iter()
734 .fold(self, |builder, doc| builder.document(doc))
735 }
736
737 /// Adds a tool to the completion request.
738 pub fn tool(mut self, tool: ToolDefinition) -> Self {
739 self.tools.push(tool);
740 self
741 }
742
743 /// Adds a list of tools to the completion request.
744 pub fn tools(self, tools: Vec<ToolDefinition>) -> Self {
745 tools
746 .into_iter()
747 .fold(self, |builder, tool| builder.tool(tool))
748 }
749
750 /// Adds additional parameters to the completion request.
751 /// This can be used to set additional provider-specific parameters. For example,
752 /// Cohere's completion models accept a `connectors` parameter that can be used to
753 /// specify the data connectors used by Cohere when executing the completion
754 /// (see `examples/cohere_connectors.rs`).
755 pub fn additional_params(mut self, additional_params: serde_json::Value) -> Self {
756 match self.additional_params {
757 Some(params) => {
758 self.additional_params = Some(json_utils::merge(params, additional_params));
759 }
760 None => {
761 self.additional_params = Some(additional_params);
762 }
763 }
764 self
765 }
766
767 /// Sets the additional parameters for the completion request.
768 /// This can be used to set additional provider-specific parameters. For example,
769 /// Cohere's completion models accept a `connectors` parameter that can be used to
770 /// specify the data connectors used by Cohere when executing the completion
771 /// (see `examples/cohere_connectors.rs`).
772 pub fn additional_params_opt(mut self, additional_params: Option<serde_json::Value>) -> Self {
773 self.additional_params = additional_params;
774 self
775 }
776
777 /// Sets the temperature for the completion request.
778 pub fn temperature(mut self, temperature: f64) -> Self {
779 self.temperature = Some(temperature);
780 self
781 }
782
783 /// Sets the temperature for the completion request.
784 pub fn temperature_opt(mut self, temperature: Option<f64>) -> Self {
785 self.temperature = temperature;
786 self
787 }
788
789 /// Sets the max tokens for the completion request.
790 /// Note: This is required if using Anthropic
791 pub fn max_tokens(mut self, max_tokens: u64) -> Self {
792 self.max_tokens = Some(max_tokens);
793 self
794 }
795
796 /// Sets the max tokens for the completion request.
797 /// Note: This is required if using Anthropic
798 pub fn max_tokens_opt(mut self, max_tokens: Option<u64>) -> Self {
799 self.max_tokens = max_tokens;
800 self
801 }
802
803 /// Sets the thing.
804 pub fn tool_choice(mut self, tool_choice: ToolChoice) -> Self {
805 self.tool_choice = Some(tool_choice);
806 self
807 }
808
809 /// Sets the output schema for structured output. When set, providers that support
810 /// native structured outputs will constrain the model's response to match this schema.
811 /// NOTE: For direct type conversion, you may want to use `Agent::prompt_typed()` - using this method
812 /// with `Agent::prompt()` will still output a String at the end, it'll just be compatible with whatever
813 /// type you want to use here. This method is primarily an escape hatch for agents being used as tools
814 /// to still be able to leverage structured outputs.
815 pub fn output_schema(mut self, schema: schemars::Schema) -> Self {
816 self.output_schema = Some(schema);
817 self
818 }
819
820 /// Sets the output schema for structured output from an optional value.
821 /// NOTE: For direct type conversion, you may want to use `Agent::prompt_typed()` - using this method
822 /// with `Agent::prompt()` will still output a String at the end, it'll just be compatible with whatever
823 /// type you want to use here. This method is primarily an escape hatch for agents being used as tools
824 /// to still be able to leverage structured outputs.
825 pub fn output_schema_opt(mut self, schema: Option<schemars::Schema>) -> Self {
826 self.output_schema = schema;
827 self
828 }
829
830 /// Builds the completion request.
831 pub fn build(self) -> CompletionRequest {
832 let chat_history = OneOrMany::many([self.chat_history, vec![self.prompt]].concat())
833 .expect("There will always be atleast the prompt");
834
835 CompletionRequest {
836 model: self.request_model,
837 preamble: self.preamble,
838 chat_history,
839 documents: self.documents,
840 tools: self.tools,
841 temperature: self.temperature,
842 max_tokens: self.max_tokens,
843 tool_choice: self.tool_choice,
844 additional_params: self.additional_params,
845 output_schema: self.output_schema,
846 }
847 }
848
849 /// Sends the completion request to the completion model provider and returns the completion response.
850 pub async fn send(self) -> Result<CompletionResponse<M::Response>, CompletionError> {
851 let model = self.model.clone();
852 model.completion(self.build()).await
853 }
854
855 /// Stream the completion request
856 pub async fn stream<'a>(
857 self,
858 ) -> Result<StreamingCompletionResponse<M::StreamingResponse>, CompletionError>
859 where
860 <M as CompletionModel>::StreamingResponse: 'a,
861 Self: 'a,
862 {
863 let model = self.model.clone();
864 model.stream(self.build()).await
865 }
866}
867
868#[cfg(test)]
869mod tests {
870
871 use super::*;
872
873 #[test]
874 fn test_document_display_without_metadata() {
875 let doc = Document {
876 id: "123".to_string(),
877 text: "This is a test document.".to_string(),
878 additional_props: HashMap::new(),
879 };
880
881 let expected = "<file id: 123>\nThis is a test document.\n</file>\n";
882 assert_eq!(format!("{doc}"), expected);
883 }
884
885 #[test]
886 fn test_document_display_with_metadata() {
887 let mut additional_props = HashMap::new();
888 additional_props.insert("author".to_string(), "John Doe".to_string());
889 additional_props.insert("length".to_string(), "42".to_string());
890
891 let doc = Document {
892 id: "123".to_string(),
893 text: "This is a test document.".to_string(),
894 additional_props,
895 };
896
897 let expected = concat!(
898 "<file id: 123>\n",
899 "<metadata author: \"John Doe\" length: \"42\" />\n",
900 "This is a test document.\n",
901 "</file>\n"
902 );
903 assert_eq!(format!("{doc}"), expected);
904 }
905
906 #[test]
907 fn test_normalize_documents_with_documents() {
908 let doc1 = Document {
909 id: "doc1".to_string(),
910 text: "Document 1 text.".to_string(),
911 additional_props: HashMap::new(),
912 };
913
914 let doc2 = Document {
915 id: "doc2".to_string(),
916 text: "Document 2 text.".to_string(),
917 additional_props: HashMap::new(),
918 };
919
920 let request = CompletionRequest {
921 model: None,
922 preamble: None,
923 chat_history: OneOrMany::one("What is the capital of France?".into()),
924 documents: vec![doc1, doc2],
925 tools: Vec::new(),
926 temperature: None,
927 max_tokens: None,
928 tool_choice: None,
929 additional_params: None,
930 output_schema: None,
931 };
932
933 let expected = Message::User {
934 content: OneOrMany::many(vec![
935 UserContent::document(
936 "<file id: doc1>\nDocument 1 text.\n</file>\n".to_string(),
937 Some(DocumentMediaType::TXT),
938 ),
939 UserContent::document(
940 "<file id: doc2>\nDocument 2 text.\n</file>\n".to_string(),
941 Some(DocumentMediaType::TXT),
942 ),
943 ])
944 .expect("There will be at least one document"),
945 };
946
947 assert_eq!(request.normalized_documents(), Some(expected));
948 }
949
950 #[test]
951 fn test_normalize_documents_without_documents() {
952 let request = CompletionRequest {
953 model: None,
954 preamble: None,
955 chat_history: OneOrMany::one("What is the capital of France?".into()),
956 documents: Vec::new(),
957 tools: Vec::new(),
958 temperature: None,
959 max_tokens: None,
960 tool_choice: None,
961 additional_params: None,
962 output_schema: None,
963 };
964
965 assert_eq!(request.normalized_documents(), None);
966 }
967}